公式:F(0)=0,F(1)=1, F(n)=F(n - 1)+F(n - 2)(n ≥ 2,n ∈ N*)
我们今天用简单的函数去编写斐波那契数列,以此为例子,简单的应用函数和列表的知识,返回斐波那契数列前n项。
首先,我们定义一个函数
def fibonacci(n): #声明函数
随后,定义一个列表,表中放入数列的前两项
fib=[0,1]
然后,我们开始循环,不断向列表中添加数列的后两项和,并返回列表
while n>2:
fib.append(fib[-1]+fib[-2])
n-=1
return fib
最后,我们调用函数,并打印列表
a=fibonacci(10)
print(a)
展示运行结果
完整代码如下:
def fibonacci(n): #声明函数
fib=[0,1]
while n>2:
fib.append(fib[-1]+fib[-2])
n-=1
return fib
a=fibonacci(10)
print(a)
本代码主要以列表索引的使用为主,配合循环、函数调用 简单地实现了求斐波那契数列前n项,适合初学者参考。
若有错误或其他意见,欢迎指正。