【MMClassification介绍、北京超算30区使用MMClassification训练花卉图片分类模型、代码讲解 笔记3】

MMClassification是一个丰富的图像分类工具包,支持多种模型和数据集,提供Python推理API和训练工具。它采用模块化设计,通过配置文件定义训练过程,包括模型结构、数据集、训练策略等。在实践中,用户可以利用MIM工具进行训练和测试,并在不同计算环境下(如北京超算30区)执行单卡或多卡计算任务,进行花卉图片的分类模型训练。
摘要由CSDN通过智能技术生成

一、MMClassification
1.图像分类工具包MMClassification
丰富的模型、数据集支持、易用的工具、训练技巧与策略、模块化设计
2.Python推理API
3.推理工具(需源码安装)
-单张图像推理
-在测试集上训练
     单卡
     多机多卡
4.训练工具(需源码安装)
5.使用MIM工具实现训练和测试
MIM为所有OpenMMLab工具提供了统一的命令行接口
-下载配置文件和预训练权重
-训练(支持单卡、多卡、Slurm任务管理器)
-测试
6.环境搭建
7.OpenMMLab项目中的重要概念-配置文件
1)深度学习模型的训练涉及几个方面:
-模型结构 模型有几层、每层多少通道数等等
-数据集 用什么数据训练模型:数据集划分、数据文件路径、数据增强策略等等
-训练策略 梯度下降算法、学习率参数、batch_size、训练总轮次、学习率变化策略等等
-运行时 GPU、分布式环境配置等等
-一些辅助功能 如打印日志、定时保存checkpoint
2)在OpenMMLab项目中,所有这些项目都涵盖在一个配置文件中,一个配置文件定义了一个完整的训练过程
-model字段定义模型
-data字段定义数据
-optimizer、Ir_config等字段定义训练策略
-load_from字段定义与训练模型的参数文件
8.配置文件的运作方式
9.图像分类模型的构成
二、北京超算30区使用MMClassification训练花卉图片分类模型
1.创建环境
2.数据集
划分数据集
3.MMCls配置文件
-模型配置文件
-数据配置
-学习率
-加载预训练模型
-微调
-完整示例
4.提交计算
1)单卡计算
2)单节点多卡计算
3)多节点计算
4)取消计算
5)查看GPU利用率

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值