- 博客(29)
- 收藏
- 关注
原创 Pytorch加载数据dataset时PIL和cv2的异同
读取和保存图像:使用方法读取图像,使用方法保存图像。import cv2 # 读取图像 img = cv2 . imread('image.jpg') # 保存图像 cv2 . imwrite('new_image.jpg' , img)转换通道顺序:使用方法。
2023-04-21 11:04:24 549 1
原创 Pytorch中的dataset和dataloader解析
当我们用 PyTorch 来训练神经网络时,经常需要用到Dataset和DataLoader这两个类。它们都是 PyTorch 中的数据处理工具,用于读取和处理大量的数据,并将其转换为可供神经网络使用的格式。
2023-04-21 10:38:21 420
原创 【代码实践】终端已经运行了python程序后修改该程序是否影响另一个终端中运行的程序实例
在一个终端中运行 Python 程序并修改了该程序,那么这些更改不会立即影响已经在另一个终端中运行的程序实例。原因:当在第一个终端中运行 Python 程序时,操作系统将创建一个来运行该程序。这个进程,并且与其他进程完全隔离。因此,如果您在另一个终端中修改程序或文件,这些更改只会影响到后续启动的新进程,而不会影响已经在第一个终端中运行的进程。注意:如果在第一个终端中使用了某些共享资源(例如文件、数据库连接等),并在后续的修改中修改了这些资源,那么这些更改可能会对进程产生影响,甚至导致错误。
2023-04-19 19:45:38 3517
原创 神经网络常见归一化操作总结(BN、LN、IN、SN)
BN(Batch Normalization)、LN(Layer Normalization)和IN(Instance Normalization)与SN(Spectral Normalization)都是归一化方法,但它们的作用对象和计算方式略有不同。
2023-04-18 15:45:12 1353
原创 【超级视客营】基于超算平台的MMYOLO实践过程记录(自定义数据集实现YOLO v5)
基于超算平台的MMYOLO实践过程记录(自定义数据集实现YOLOv5)
2023-01-17 14:06:38 1090 1
原创 【OpenMMLab实践】03MMClassification理论(CNN分类模型训练以及PyTorch简介-中)
CNN训练技巧:随机梯度下降为主,各种经验策略辅助损失函数高度不规则,非凸权重初始化:kaiming init,预训练模型优化器改进:动量SGD,自适应梯度算法学习率策略:学习率退火,升温防止过拟合数据增广、早停、DropoutBatch Normalization:稳定数据分布,降低训练难度。
2022-11-18 15:26:51 1897
原创 【OpenMMLab实践】02MMClassification理论(传统视觉思路以及CNN分类网络的模型修改策略总结-上)
通用视觉框架OpenMMLab——图像分类与MMClassification
2022-11-17 14:53:02 987
原创 【OpenMMLab实践】01MMSegmentation官方教程实现过程记录(mmcv,mmsegmentation,torch)
MMSegmentation官方教程实现过程记录(mmcv,mmsegmentation,torch)
2022-11-15 21:33:18 2681
原创 【深度学习进阶】03目标检测理论:YOLO v1和YOLO v2网络
上一篇文章介绍了目标检测任务中one stage方法的三个代表:SSD、RetinaNet、YOLO v1,本节继续总结YOLO v2的特点和改进细节
2022-10-07 22:15:11 1139
原创 【Python基础】01基本的print函数、二进制与字符编码、变量、数据类型、input函数、运算符
python输出函数print、转义字符与原字符、二进制与字符编码、标识符和保留字、变量、数据类型、类型转换、python中的注释、input函数、运算符、运算符优先级
2022-10-06 20:20:36 1590
原创 【深度学习进阶】02目标检测理论:一阶段方法YOLO v1-v3、SSD、RetinaNet、FCOS网络对比分析
目标检测任务中SSD、RetinaNet、YOLO v1算法的简要介绍
2022-10-05 21:30:36 2988
原创 【深度学习进阶】01目标检测理论:R-CNN、Fast R-CNN、Faster R-CNN系列以及FPN结构
深度学习中的目标检测任务,分为三节:本节为01,介绍RCNN系列的三个网络架构(two stage目标检测),02将介绍SSD系列(one stage 目标检测),03还没想好
2022-10-04 22:51:12 2137 1
原创 【医学图像智能计算】DL在医学影像中的应用综述—图像重建
本文以临床常用的 X 射线、超声、计算机断层扫描和磁共振等4 种影像为例,对深度学习在医学影像中的应用现状进行综述,特别面向图像重建、病灶检测、图像分割、图像配准和计算机辅助诊断这5大任务的主要深度学习方法的进展进行介绍,并对发展趋势进行展望
2022-10-03 23:01:19 2737
原创 【深度学习基础】02梯度下降算法改进:SGD、Momentum、NAG、RMSProp、Adam等
掌握参数初始化策略的优点,Mini-batch的特点以及优势,掌握梯度下降算法优化的目的以及效果,掌握指数移动平均值的好处,掌握动量梯度下降法的优点以及RMSProp、Adam的特点,掌握学习率衰减方式,掌握标准化输入带来的网络学习速度的提升
2022-10-02 22:10:08 1461
原创 【计算机视觉】03数字图像处理基础:图像增强(灰度/点运算、直方图修正、平滑/滤波、锐化)
从图像增强算法的基本原理出发,归纳总结了近年来应用比较广泛的空域和频域两大类图像增强算法,包括直方图均衡图像增强算法、灰度变换图像增强算法分别详细介绍了它们的基本概念和相关定义并简述了其浅层面的优缺点。另外采用主观和客观的评价方法对这些算法的增强效果进行了对比和分析,并对各算法的优缺点、适用场景和复杂度进行了对比分析,以更深入研究各个图像增强算法的隐含有用信息,以找出鲁棒性、适用性更强的图像增强方法
2022-10-01 21:56:24 4645
原创 【计算机视觉】01数字图像处理基础:图像降噪(滤波、稀疏表达、聚类低秩、统计模型、深度学习)
数字图像处理基本算法系统深入理解,并实现一下。主要包含各个算法的基本原理、它们的优缺点、应用场合、效率、代码、实现效果及参考链接等。
2022-09-30 16:56:55 2814
原创 【CNN优化加速】02轻量化模型:MobileNet v1-v3、ShuffleNet v1-v2、EfficientNet v1-v2简介
经典的轻量化网络简介【持续更新】
2022-09-28 21:00:05 2230
原创 【语义分割】算法理论梳理:基础理论/常见网络FCN、DeepLab、LR-ASPP、UNet、U2Net
图像分割中语义分割算法的理论梳理,主要针对算法的演化思路以及涉及到的专有名词(如转置卷积、膨胀卷积、mean IoU等)进行总结,想要对语义分割算法有一个框架式、全局掌握的小伙伴可以来看一眼。
2022-08-24 22:21:15 2892 1
原创 【有丝分裂检测】MIDOG Domain Adaptation实现
病理图像有丝分裂检测PyTorch实现,从标注文件解析,mask生成,patch生成,颜色校正,到细胞检测(U-Net)最后进行F1评分【未完待更新】
2022-08-17 10:29:56 1070 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人