第2讲 有理数
Gu, Ph.D
2022-8-3
1 数轴和数
1.1 什么是数轴
1.2 数轴的性质和正负数
- 原点为0,原点右边为正数,左边为负数,负数用“—”号表示。
例如,-3;-5,-3.5。
- 一个数可以分为两个部分,“符号”和“数值”。
例如,-3的符号是“-”,数值是3;5的符号是“+”,数值是5。
- 一个数的“数值”部分可以认为是它离原点的距离。
例如,5表示它在原点右边5个单位;-3表示它在原点左边3个单位。
- 数轴上的任何一个点都代表一个数。
- 数轴右边的数比左边大。
2 有理数
- 数轴上有一部分数能够用整数和分数表示,这些数被称为有理数。
- 有限小数和无限循环小数是有理数。
- 与有理数对应的是无理数。
例如, π \pi π。
3 有理数的加减法
3.1 有理数的加法
- 有理数加1个正数,意味着在数轴上往右移动相应单位。
例1:5+3,在5的基础上往右移动3个单位,等于8;
例2:-5+3,在-5的基础上往右移动3个单位,等于-2。
- 有理数加1个负数,意味着在数轴上往左移动相应单位,等价于减去负数的“数字部分”。
例1:5+(-3),在5的基础上往左移动3个单位,等于2;
例2:-5+(-3),在-5的基础上往左移动3个单位,等于-8。
- 有理数减1个正数,意味着在数轴上往左移动相应单位,等价于减去这个数。
- 有理数减1个负数,意味着在数轴上往右移动相应单位,等价于加这个数的数值部分。
- 加负数等同于减,减负数等同于加。
- 具体计算时:
负数+负数,数值部分为两数数值部分相加,符号为负;
正数+负数,数值部分为大的数值-小的数值,符号跟大数值数的符号。
- 有理数加法服从交换律和结合率。
交换律 a + b = b + a a+b=b+a a+b=b+a
结合律 a + b + c = a + ( b + c ) a+b+c=a+(b+c) a+b+c=a+(b+c)
4 相反数
- 定义:相加为0的两个数,互为相反数。
- 几何含义:数轴上,原点两边,离原点距离相等的两个点。
5 绝对值
- 定义:一个数离原点的距离是这个数的绝对值。
- 绝对值是一个非负数,即大于0的数。
- 绝对值可以理解为一个数的数值部分。
6 有理数的乘除法
6.1 乘以-1的意义
- 定义:有理数乘以-1表示找到该数在数轴上关于原点的对称点。
- 有理数乘以-1,符号相反,数值不变。
6.2 正数乘以负数
- 正数乘以负数可以理解为数值x数值x(-1),数值部分等于两数绝对值相乘,符号为负。
5 × ( − 3 ) = 5 × 3 × ( − 1 ) = − 15 5\times(-3)=5\times3\times(-1)=-15 5×(−3)=5×3×(−1)=−15,注意当负数出现在公式非非第一个数时,要加括号。
6.3 负数乘以负数
- 负数乘以负数可以理解为数值x数值x(-1)x(-1),数值部分等于两数绝对值相乘,符号为正。
− 5 × ( − 3 ) = 5 × ( − 1 ) × 3 × ( − 1 ) × ( − 1 ) = 15 -5\times(-3)=5\times(-1)\times3\times(-1)\times(-1)=15 −5×(−3)=5×(−1)×3×(−1)×(−1)=15
6.4 运算定律
- 有理数乘法服从交换律,结合律和分配率。
a × b = b × a a \times b=b \times a a×b=b×a
a × b × c = a × ( b × c ) a \times b \times c= a \times (b \times c) a×b×c=a×(b×c)
a × ( b + c ) = a × b + a × c a\times (b+c)=a\times b+a\times c a×(b+c)=a×b+a×c
6.5 有理数的除法
- a ÷ b = a × 1 b a\div b=a\times \frac{1}{b} a÷b=a×b1 ,除法变为乘法。
- 0不能做除数,0除以任何非0数为0。
7 有理数的乘方和倒数
7.1 幂为非负整数
- 乘方的含义:当b为正整数时, a b a^b ab表示 b b b个 a a a相乘。 b b b称为 a a a的指数或者幂, a b a^b ab读作 a a a的 b b b次方,或者 a a a的 b b b次幂。
例如, 5 3 5^3 53= 5 × 5 × 5 5\times 5\times 5 5×5×5
- 当b为0是, a b = 1 a^b=1 ab=1。
7.2 幂为负整数
- 当 b = 1 b=1 b=1时, a − b = 1 a a^{-b}=\frac{1}{a} a−b=a1, 1 a \frac{1}{a} a1称为a的倒数。
- 当b为正整数时, a − b a^{-b} a−b表示 b b b个 a a a相乘再取倒数。
例如, 5 − 3 = 1 5 × 5 × 5 5^{-3}=\frac{1}{5\times 5\times 5} 5−3=5×5×51
7.3 运算顺序
- 有括号优先计算括号里的,再计算乘方,再计算乘除,最后计算加减。
8 科学记数法
8.1 “大数”的科学计数法
- 有些数特别大,写、看都不方便。可以通过 a × 1 0 b a\times 10^b a×10b的形式表示,其中 1 ⩽ a < 10 1\leqslant a<10 1⩽a<10,b为正整数。
例如,中国有1400000000人,可以表示为 1.4 × 1 0 9 1.4\times 10^9 1.4×109。数有几位,10的次数就是几-1。如果忘了怎么办?
8.2 “小数”的科学计数法
- 有些数特别小,写、看都不方便。也可以通过 a × 1 0 b a\times 10^b a×10b的形式表示,其中 1 ⩽ a < 10 1\leqslant a<10 1⩽a<10,b为负整数。
例如,细胞的直径是0.000015米,可以表示为 1.5 × 1 0 − 5 1.5\times 10^{-5} 1.5×10−5。
9 近似数
- 四舍五入。
- 保留几位小数,看后一位进行四舍五入。
例如,光速299792458m/s,用科学计数法表示,小数点后保留2位。 2.99792458 × 1 0 8 2.99792458\times 10^8 2.99792458×108→ 3.00 × 1 0 8 3.00\times 10^8 3.00×108