一、Python处理大数据集的痛点
Python是数据分析最好的工具之一,像pandas、numpy、matplotlib等都是Python生态的数据分析利器,但处理大数据集是Python的一大痛点,特别是你在本地电脑进行IO操作时非常慢,像pandas读取上G的文件就得几分钟。
我之前参加过一个交通类的数据科学比赛,主办方让参赛者从官网下载几十G的原始CSV文件,这些数据存在电脑里,然后通过Python来读取、清洗、可视化、建模,每一步都很慢,当时用了多线程、分块读取等各种方法才勉强完成比赛。
当然市面上很多工具可以提升数据处理的效率,比如Pyspark、Modin、Polars等,确实提升不少,但依旧受限于电脑的内存和性能限制。
二、使用下秒数据机器人实现大数据集ETL
既然本地电脑不行,那就只能上云,我的需求是云工具必须要能快速存取数据,且支持SQL查询和Python调用,这样既能在云上完成SQL数据清洗,还能通过Python调用API实现数据抽取。
最近刚好发现了这样一个工具-下秒数据机器人,不光支持大数据集快速上传、SQL查询、Python API调用,还能实现AI数据问答、自助分析等功能,非常方便。
a) 数据集导入
下秒数据机器人支持CSV、Excel、XML、Json及各种数据库等数据导入
下秒数据机器人网站链接:
http://nexadata.cn/mobileSetMessage
如果对数据导入有问题,可以联系下秒的技术支持
b) SQL数据查询
数据导入过程中可以使用SQL进行数据清洗,也可以查询已经导入的数据集
c) Python API调用
几行代码就可以实现Python API数据读取,还支持Java、Javascript、PHP语言调用,再也不用纠结本地电脑内存了。
d) AI数据问答
通过文本提问形式,实现数据的分析和提取