这个云ETL工具配合Python轻松实现大数据集分析,附案例

本文介绍了使用Python处理大数据集的挑战,并推荐了下秒数据机器人作为解决方案。该工具支持大数据集快速上传、SQL查询、Python API调用,以及AI数据问答和自助分析。通过葡萄酒质量数据集的案例,展示了如何利用该工具进行数据存储、API调用及可视化分析,强调了其在数据分析和建模中的便利性。
摘要由CSDN通过智能技术生成

一、Python处理大数据集的痛点

Python是数据分析最好的工具之一,像pandas、numpy、matplotlib等都是Python生态的数据分析利器,但处理大数据集是Python的一大痛点,特别是你在本地电脑进行IO操作时非常慢,像pandas读取上G的文件就得几分钟。

我之前参加过一个交通类的数据科学比赛,主办方让参赛者从官网下载几十G的原始CSV文件,这些数据存在电脑里,然后通过Python来读取、清洗、可视化、建模,每一步都很慢,当时用了多线程、分块读取等各种方法才勉强完成比赛。

当然市面上很多工具可以提升数据处理的效率,比如Pyspark、Modin、Polars等,确实提升不少,但依旧受限于电脑的内存和性能限制。

二、使用下秒数据机器人实现大数据集ETL

既然本地电脑不行,那就只能上云,我的需求是云工具必须要能快速存取数据,且支持SQL查询和Python调用,这样既能在云上完成SQL数据清洗,还能通过Python调用API实现数据抽取。

最近刚好发现了这样一个工具-下秒数据机器人,不光支持大数据集快速上传、SQL查询、Python API调用,还能实现AI数据问答、自助分析等功能,非常方便。

a) 数据集导入

下秒数据机器人支持CSV、Excel、XML、Json及各种数据库等数据导入

下秒数据机器人网站链接:

http://nexadata.cn/mobileSetMessage

如果对数据导入有问题,可以联系下秒的技术支持

b) SQL数据查询

数据导入过程中可以使用SQL进行数据清洗,也可以查询已经导入的数据集

c) Python API调用

几行代码就可以实现Python API数据读取,还支持Java、Javascript、PHP语言调用,再也不用纠结本地电脑内存了。

d) AI数据问答

通过文本提问形式,实现数据的分析和提取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值