机器学习,顾名思义,机器具备有学习的能力。具体来讲,机器学习就是让机器具备找一个函数的能力。根据寻找函数的不同,可以把学习分成分类和回归两种模式。
在阅读《深度学习详解》的第一章,介绍了一个视频点击量预测的例子,了解了超参数,梯度下降的术语的内涵,总体上的数学难度极小,我觉得还需要一些代码来练习。
第一章内容比较基础,就是用搜索和导数法找函数的极小值,同时推广至二维情形。
如图,L是关于横轴w,纵轴b的函数,颜色越蓝表示值越低,用L关于各轴的偏导进行梯度下降。
机器学习,顾名思义,机器具备有学习的能力。具体来讲,机器学习就是让机器具备找一个函数的能力。根据寻找函数的不同,可以把学习分成分类和回归两种模式。
在阅读《深度学习详解》的第一章,介绍了一个视频点击量预测的例子,了解了超参数,梯度下降的术语的内涵,总体上的数学难度极小,我觉得还需要一些代码来练习。
第一章内容比较基础,就是用搜索和导数法找函数的极小值,同时推广至二维情形。
如图,L是关于横轴w,纵轴b的函数,颜色越蓝表示值越低,用L关于各轴的偏导进行梯度下降。