目录
红黑树的概念
红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black。
通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路
径会比其他路径长出俩倍,因而是接近平衡的。
红黑树的性质
红黑树为了保证其最长路径中节点个数不会超过最短路径节点个数的两倍,具有以下性质:
- 每个结点不是红色就是黑色
- 根节点是黑色的
- 如果一个节点是红色的,则它的两个孩子结点是黑色的
- 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均包含相同数目的黑色结点
- 每个叶子结点都是黑色的(此处的叶子结点指的是空结点)
根据红黑树的性质3可以得出,红黑树当中不会出现连续的红色结点,而根据性质4又可以得出,从某一结点到其后代叶子结点的所有路径上包含的黑色结点的数目是相同的。
我们假设在红黑树中,从根到叶子的所有路径上包含的黑色结点的个数都是N个,那么最短路径就是全部由黑色节点构成的路径,即长度为N。
而最长可能路径就是由一黑一红结点构成的路径,该路径当中黑色结点与红色结点的数目相同,即长度为2N。
因此,红黑树从根到叶子的最长可能路径不会超过最短可能路径的两倍。
红黑树节点的定义
template<class K, class V>
struct RBTreeNode
{
//三叉链
//方便旋转操作
RBTreeNode<K, V>* _left;
RBTreeNode<K, V>* _right;
RBTreeNode<K, V>* _parent;
//存储的键值对
pair<K, V> _kv;
//结点的颜色
int _col; //红/黑
//构造函数
RBTreeNode(const pair<K, V>& kv)
:_left(nullptr)
, _right(nullptr)
, _parent(nullptr)
, _kv(kv)
, _col(RED)
{}
};
对于节点的颜色,因为只有红和黑两种颜色,bool值表示比较简单,但这里我使用枚举定义颜色,可以增加代码的可读性和可维护性,并且便于后序的调试操作。
//枚举定义结点的颜色
enum Colour
{
RED,
BLACK
};
【思考】在节点的定义中,为什么要将节点的默认颜色给成红色的?
当我们向红黑树插入结点时,若我们插入的是黑色结点,那么插入路径上黑色结点的数目就比其他路径上黑色结点的数目多了一个,即破坏了红黑树的性质4,此时我们就需要对红黑树进行调整。
若我们插入红黑树的结点是红色的,此时如果其父结点也是红色的,那么表明出现了连续的红色结点,即破坏了红黑树的性质3,此时我们需要对红黑树进行调整;但如果其