C++之红黑树

前言:博主的重点是实现红黑树的插入

目录

红黑树

红黑树的概念

红黑树的性质

思考:为什么满足上面的性质,红黑树就能保证:其最长路径中节点个数不会超过最短路径节点个数的两倍?

AVL树与红黑树效率的比较

为什么红黑树用的跟多呢?

红黑树的实现

红黑树节点的定义

在节点的定义中,为什么要将节点的默认颜色给成红色的?

红黑树的插入操作

1. 按照二叉搜索的树规则插入新节点

2. 检测新节点插入后,红黑树的性质是否造到破坏

情况一: cur为红,p为红,g为黑,u存在且为红

解决方式:

抽象图:

具象图:

情况二: cur为红,p为红,g为黑,u不存在/u为黑

解决方法:

抽象图: 

​编辑具象图:

​编辑情况三: cur为红,p为红,g为黑,u不存在/u为黑

解决方法:

抽象图:  

​编辑具象图:

红黑树的验证  

1. 检测其是否满足二叉搜索树(中序遍历是否为有序序列)

2. 检测其是否满足红黑树的性质

红黑树的测试

​编辑红黑树的删除

红黑树的应用

红黑树的完整代码


红黑树

红黑树的概念

红黑树 ,是一种 二叉搜索树 ,但 在每个结点上增加一个存储位表示结点的颜色,可以是 Red Black 。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出俩 ,因而是 接近平衡 的。

红黑树的性质

1. 每个结点不是红色就是黑色
2. 根节点是黑色的 
3. 如果一个节点是红色的,则它的两个孩子结点是黑色的 ,但是没有连续的红节点
4. 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均包含相同数目的黑色结点(每条路径的黑色节点都相同) 
5. 每个叶子结点都是黑色的 ( 此处的叶子结点指的是空结点,也就是NIL节点 )
eg:该树只有两个节点

因此性质5平常我们是不用去关注它的,但我们要知道它对应的是哪种情况即可。

思考:为什么满足上面的性质,红黑树就能保证:其最长路径中节点个数不会超过最短路径节点个数的两倍?

最短路径:全是黑节点
最长路径:一黑一红一黑一红....
假设每条路径黑节点是N,那么N<=任意路径<=2N。

AVL树与红黑树效率的比较

AVL树左右两边更均衡,高度更接近logN。
红黑树左右两边并没有那么均衡,它的整体高度:
假设红黑树中一条路径的黑色节点的数量是X
假设红黑树的高度是h,        2X>=h>=X.
N是树中节点的数量
2^X-1<=           N          <=2^X=2X-1
全黑满二叉树                  一黑一红满二叉树
X<=㏒₂N+1                     X>=(log₂N+1)/2
黑色最坏情况是㏒₂N,加上红色以后最坏情况就是2*㏒₂N
结论:AVL 树严格平衡,效率logN,红黑树接近平衡,效率是2*logN;

为什么红黑树用的跟多呢?

因为在内存中CPU非常快,N对于CPU非常小,假如N是10亿,AVL找30次,红黑树找60次。这对于CPU是没差别的。就好比你有1块与你有5毛的区别,不管你有哪个你都是穷的;另外AVL树达到平衡需要很多次的旋转才能达到,但是红黑树却不需要旋转,也就是说AVL树结果虽然比红黑树好一点,但是这一丁点是无足轻重的,而且为了好这一点AVL树付出了很大旋转的代价; 所以红黑树在经常进行增删的结构 中性能比 AVL 树更优,而且红黑树实现比较简单,所以实际运用中红黑树更多。

红黑树的实现

红黑树节点的定义

enum Colour
{
	RED,
	BLACK
};

template<class K,class V>
struct RBTreeNode
{
	RBTreeNode<K, V>* _left;
	RBTreeNode<K, V>* _right;
	RBTreeNode<K, V>* _parent;
	pair<K, V> _kv;
	
	Colour _col;

	RBTreeNode(const pair<K, V>& kv)
		:_left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _col(RED) //红的黑的都无所谓
		, _kv(kv)
	{}
};

在节点的定义中,为什么要将节点的默认颜色给成红色的?

插入黑节点或者插入红节点就代表着破坏规则3和4,但是破坏规则3的代价要比破坏4的代价小很多 。所以我们默认插入的是红节点。

红黑树的插入操作

红黑树是在二叉搜索树的基础上加上其平衡限制条件,因此红黑树的插入可分为两步:

1. 按照二叉搜索的树规则插入新节点

	bool Insert(const pair<K, V>& kv)
	{
		if (_root == nullptr)
		{
			_root = new Node(kv);
			_root->_col = BLACK; //将根节点处理成黑色
			return true;
		}
		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false;
			}
		}

		cur = new Node(kv);
		cur->_col = RED; //新增节点处理成红色

		if (parent->_kv.first < kv.first)
		{
			parent->_right = cur;
			cur->_parent = parent; //把三叉链链上
		}
		else
		{
			parent->_left = cur;
			cur->_parent = parent;
		}

		//控制平衡


		return true;
	}

2. 检测新节点插入后,红黑树的性质是否造到破坏

因为 新节点的默认颜色是红色 ,因此:如果 其双亲节点的颜色是黑色,没有违反红黑树任何性质 ,则不需要调整;但当新插入节点的双亲节点颜色为红色时,就违反了性质三不能有连在一起的红色节点 ,此时需要对红黑树分情况来讨论:
约定:cur为当前节点,p为父节点,g为祖父节点,u为叔叔节点

情况一: cur为红,p为红,g为黑,u存在且为红

解决方式:

将p,u改为黑,g改为红,然后把g当成cur,继续向上调整。

抽象图:

具象图:

情况二: cur为红,p为红,g为黑,u不存在/u为黑

解决方法:

p g 的左孩子, cur p 的左孩子,则进行右单旋转;相反,
p g 的右孩子, cur p 的右孩子,则进行左单旋转
p g 变色 --p 变黑, g 变红

抽象图: 

具象图:

情况三: cur为红,p为红,g为黑,u不存在/u为黑

解决方法:

p g 的左孩子, cur p 的右孩子,则针对 p 做左单旋转,对g进行右单旋转
p g 的右孩子, cur p 的左孩子,则针对 p 做右单旋转,对g进行左单旋转;
cur、 g 变色 --cur 变黑, g 变红

抽象图:  

具象图:

完整代码:

		//控制平衡
		while (parent&& parent->_col == RED) //父亲存在且为红一定不是根
		{
			Node* grangfather = parent->_parent;
			if (parent == grangfather->_left) //父亲在g的左
			{
				Node* uncle = grangfather->_right;
				if (uncle && uncle->_col == RED)//情况一:叔叔存在且为红
				{
					//变色+继续向上处理
					parent->_col = uncle->_col = BLACK;
					grangfather->_col = RED;

					cur = grangfather;
					parent = cur->_parent;
				}
				else //情况二+三:叔叔存在/叔叔存在且为黑  
				{
					//        g    
					//    p
					//c

					//        g
					//    p
					//        c

					if (cur == parent->_left) //情况二
					{ 
						//单旋
						RotateR(grangfather);
						parent->_col = BLACK;
						grangfather->_col = RED;
					}
					else  //情况三
					{
						//双旋
						RotateL(parent);
						RotateR(grangfather);
						cur->_col = BLACK;
						grangfather->_col = RED;
					}

					break; //我这棵树旋转完成了后,每条路径黑节点的个数没变,不会影响其他路径,这棵字树的根已经是黑色了,与情况一不同
				}

			}
			else//parent == grangfather->_right p在g的右
			{
				Node* uncle = grangfather->_left;
				if (uncle && uncle->_col == RED)//情况一:叔叔存在且为红
				{
					//变色+继续向上处理
					parent->_col = uncle->_col = BLACK;
					grangfather->_col = RED;

					cur = grangfather;
					parent = cur->_parent;
				}
				else //情况二+三:叔叔存在/叔叔存在且为黑  
				{
					//      g
					//           p
					//               c


					//      g
					//           p
					//      c
					if (cur == parent->_right) //情况二
					{
						RotateL(grangfather);
						parent->_col = BLACK;
						grangfather->_col = RED;
					}
					else //情况三
					{
						RotateR(parent);
						RotateL(grangfather);
						cur->_col = BLACK;
						grangfather->_col = RED;
					}

					break; //我这棵树旋转完成了后,每条路径黑节点的个数没变,不会影响其他路径,这棵字树的根已经是黑色了,与情况一不同
				}
			}
		}

		_root->_col = BLACK;

红黑树的验证  

红黑树的检测分为两步:

1. 检测其是否满足二叉搜索树(中序遍历是否为有序序列)

中序遍历代码:

	void InOrder()
	{
		_InOrder(_root);
	}
	void _InOrder(Node* root)
	{
		if (root == nullptr)
		{
			return;
		}
		_InOrder(root->_left);
		cout << root->_kv.first << ":" << root->_kv.second << endl;
		_InOrder(root->_right);
	}

2. 检测其是否满足红黑树的性质

可以用最长路径不超过最短路径的二倍检查吗?

可以但是不好,eg:

  • 每个节点不是红色就是黑色,好检查,我们的颜色本身就是枚举值。
  • 根节点是黑色,好检查。
  • 每个节点是红色,则它的孩子都是黑的,我们可以通过遍历去检查红节点,然后再检查它的孩子是不是黑节点,但是这样不好,因为红节点的孩子的情况很多,可能存在2个,1个或者0个;所以我们可以通过检查红节点的父亲结点是不是黑节点来进行检查。
  • 如何检查每条路径的黑色节点的个数都相等?通过将一条最左路径的黑色节点数量做基准值,然后递归每条路径,与这个基准值做比较,如果相等则代表没问题,不相等就代表出现问题

检查代码:

	bool IsBalance()
	{
		if (_root && _root->_col == RED)
		{
			cout << "根节点不是黑色" << endl;
			return false;
		}

		//最左路径的黑色节点数量做基准值
		int banchmark = 0;
		Node* left = _root;
		while (left)
		{
			if (left->_col == BLACK)
				++banchmark;

			left = left->_left;
		}

		int blackNum = 0;
		return _IsBalance(_root, banchmark, blackNum);
	}

	bool _IsBalance(Node* root, int banchmark, int blackNum)
	{
		//依据规则进行检查
		if (root == nullptr)
		{
			if (blackNum != banchmark)
			{
				cout << "存在路径黑色节点的数量不相等" << endl;
				return false;
			}
			return true;
		}

		if (root->_col == RED && root->_parent->_col == RED)
		{
			cout << "出现连续的红色节点" << endl;
			return false;
		}

		if (root->_col == BLACK)
		{
			++blackNum;
		}

		return _IsBalance(root->_left, banchmark, blackNum)
			&& _IsBalance(root->_right, banchmark, blackNum);
	}

红黑树的测试

void TestRBtree()
{
	RBTree<int, int> t;

	//int a[] = { 5,4,3,2,1,0 };
	//int a[] = { 16, 3, 7, 11, 9, 26, 18, 14, 15 };
	int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16,14 }; 
	for (auto e : a)
	{
		t.Insert(make_pair(e, e));
		/*if (!t.IsBalance())
		{
			cout << "Insert" << e <<  endl;
		}*/
		cout << "Insert" << e << ":" << t.IsBalance() << endl;
	}

	t.InOrder(); //中序遍历是可以验证红黑树是搜索二叉树
	cout << t.IsBalance() << endl; //判断每棵树是否平衡

	//可以用最长路径不超过最短路径的二倍检查吗?可以但是不好
	//cout << "深度" << t.Height() << endl;
}

红黑树的删除

红黑树的删除不做讲解,如果有兴趣可参考:《算法导论》或者《 STL 源码剖析》,或者下面两位大佬的博客。
http://www.cnblogs.com/fornever/archive/2011/12/02/2270692.html
http://blog.csdn.net/chenhuajie123/article/details/11951777

红黑树的应用

1. C++ STL -- map/set mutil_map/mutil_set
2. Java
3. linux 内核
4. 其他一些库

红黑树的完整代码

#pragma once
#include<iostream>
#include<vector>
using namespace std;

enum Colour
{
	RED,
	BLACK
};

template<class K,class V>
struct RBTreeNode
{
	RBTreeNode<K, V>* _left;
	RBTreeNode<K, V>* _right;
	RBTreeNode<K, V>* _parent;
	pair<K, V> _kv;
	
	Colour _col;

	RBTreeNode(const pair<K, V>& kv)
		:_left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _col(RED) //红的黑的都无所谓
		, _kv(kv)
	{}
};

template<class K, class V>
struct RBTree
{
	typedef RBTreeNode<K, V> Node;
public:
	RBTree()
		:_root(nullptr)
	{}


	bool Insert(const pair<K, V>& kv)
	{
		if (_root == nullptr)
		{
			_root = new Node(kv);
			_root->_col = BLACK; //将根节点处理成黑色
			return true;
		}
		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false;
			}
		}

		cur = new Node(kv);
		cur->_col = RED; //新增节点处理成红色

		if (parent->_kv.first < kv.first)
		{
			parent->_right = cur;
			cur->_parent = parent; //把三叉链链上
		}
		else
		{
			parent->_left = cur;
			cur->_parent = parent;
		}

		//控制平衡
		while (parent&& parent->_col == RED) //父亲存在且为红一定不是根
		{
			Node* grangfather = parent->_parent;
			if (parent == grangfather->_left) //父亲在g的左
			{
				Node* uncle = grangfather->_right;
				if (uncle && uncle->_col == RED)//情况一:叔叔存在且为红
				{
					//变色+继续向上处理
					parent->_col = uncle->_col = BLACK;
					grangfather->_col = RED;

					cur = grangfather;
					parent = cur->_parent;
				}
				else //情况二+三:叔叔存在/叔叔存在且为黑  
				{
					//        g    
					//    p
					//c

					//        g
					//    p
					//        c

					if (cur == parent->_left) //情况二
					{ 
						//单旋
						RotateR(grangfather);
						parent->_col = BLACK;
						grangfather->_col = RED;
					}
					else  //情况三
					{
						//双旋
						RotateL(parent);
						RotateR(grangfather);
						cur->_col = BLACK;
						grangfather->_col = RED;
					}

					break; //我这棵树旋转完成了后,每条路径黑节点的个数没变,不会影响其他路径,这棵字树的根已经是黑色了,与情况一不同
				}

			}
			else//parent == grangfather->_right p在g的右
			{
				Node* uncle = grangfather->_left;
				if (uncle && uncle->_col == RED)//情况一:叔叔存在且为红
				{
					//变色+继续向上处理
					parent->_col = uncle->_col = BLACK;
					grangfather->_col = RED;

					cur = grangfather;
					parent = cur->_parent;
				}
				else //情况二+三:叔叔存在/叔叔存在且为黑  
				{
					//      g
					//           p
					//               c


					//      g
					//           p
					//      c
					if (cur == parent->_right) //情况二
					{
						RotateL(grangfather);
						parent->_col = BLACK;
						grangfather->_col = RED;
					}
					else //情况三
					{
						RotateR(parent);
						RotateL(grangfather);
						cur->_col = BLACK;
						grangfather->_col = RED;
					}

					break; //我这棵树旋转完成了后,每条路径黑节点的个数没变,不会影响其他路径,这棵字树的根已经是黑色了,与情况一不同
				}
			}
		}

		_root->_col = BLACK;

		return true;
	}

	void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;

		parent->_left = subLR;
		if (subLR) //不为空才链接,否则就出现空指针问题
		{
			subLR->_parent = parent;
		}

		Node* parentParent = parent->_parent; //提前记录一下parent的父亲

		subL->_right = parent;
		parent->_parent = subL;

		if (parent == _root) //如果是一颗独立的树
		{
			_root = subL;
			_root->_parent = nullptr;
		}
		else
		{
			if (parentParent->_left == parent) //改变parent父亲的链接
			{
				parentParent->_left = subL;
			}
			else
			{
				parentParent->_right = subL;
			}

			subL->_parent = parentParent; //注意三叉链接
		}

	}


	void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;

		parent->_right = subRL;
		if (subRL)
		{
			subRL->_parent = parent;
		}

		Node* parentParent = parent->_parent;
		subR->_left = parent;
		parent->_parent = subR;

		if (parent == _root)
		{
			_root = subR;
			_root->_parent = nullptr;
		}
		else
		{
			if (parentParent->_left == parent)
			{
				parentParent->_left = subR;
			}
			else
			{
				parentParent->_right = subR;
			}
			subR->_parent = parentParent;
		}

	}

	void InOrder()
	{
		_InOrder(_root);
	}
	void _InOrder(Node* root)
	{
		if (root == nullptr)
		{
			return;
		}
		_InOrder(root->_left);
		cout << root->_kv.first << ":" << root->_kv.second << endl;
		_InOrder(root->_right);
	}


	bool IsBalance()
	{
		if (_root && _root->_col == RED)
		{
			cout << "根节点不是黑色" << endl;
			return false;
		}

		//最左路径的黑色节点数量做基准值
		int banchmark = 0;
		Node* left = _root;
		while (left)
		{
			if (left->_col == BLACK)
				++banchmark;

			left = left->_left;
		}

		int blackNum = 0;
		return _IsBalance(_root, banchmark, blackNum);
	}

	bool _IsBalance(Node* root, int banchmark, int blackNum)
	{
		//依据规则进行检查
		if (root == nullptr)
		{
			if (blackNum != banchmark)
			{
				cout << "存在路径黑色节点的数量不相等" << endl;
				return false;
			}
			return true;
		}

		if (root->_col == RED && root->_parent->_col == RED)
		{
			cout << "出现连续的红色节点" << endl;
			return false;
		}

		if (root->_col == BLACK)
		{
			++blackNum;
		}

		return _IsBalance(root->_left, banchmark, blackNum)
			&& _IsBalance(root->_right, banchmark, blackNum);
	}

	int Height()
	{
		return _Height(_root);
	}

	int _Height(Node* root)
	{
		if (root == nullptr)
		{
			return 0;
		}

		int leftHeight = _Height(root->_left);
		int rightHeight = _Height(root->_right);

		return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1; //不能写反

	}
private:
	Node* _root;

};

  • 13
    点赞
  • 39
    收藏
    觉得还不错? 一键收藏
  • 7
    评论
抱歉,我是一名语言模型AI,无法为您提供演示实时代码功能。但是,我可以向您解释红黑树的基本原理和操作。红黑树是一种自平衡二叉搜索树,它的每个节点都有一个颜色属性,红色或黑色,具有以下特性: 1. 根节点为黑色。 2. 所有叶子节点(NIL节点)为黑色。 3. 如果一个节点为红色,则它的两个子节点必须都为黑色。 4. 从任意一个节点到其每个叶子节点的所有路径都包含相同数量的黑色节点。 红黑树的基本操作包括插入、删除和查找。插入和删除操作会破坏红黑树的平衡性,需要通过旋转和重新着色来修复平衡。查找操作与二叉搜索树相同,具有O(log n)的时间复杂度。 以下是红黑树的插入操作的伪代码: 1. 新节点插入到红黑树中,颜色为红色。 2. 如果新节点的父节点为黑色,则不需要做任何操作,树仍然平衡。 3. 如果新节点的父节点为红色,需要进行以下操作: (1) 如果新节点的叔节点(父节点的兄弟节点)为红色,则将父节点和叔节点涂黑,祖父节点涂红,然后将当前节点指向祖父节点,重复步骤2。 (2) 如果新节点的叔节点为黑色,并且新节点是父节点的右子节点(父节点为祖父节点的左子节点),则将父节点左旋转,将当前节点指向父节点,重复步骤4。 (3) 如果新节点的叔节点为黑色,并且新节点是父节点的左子节点(父节点为祖父节点的右子节点),则将父节点右旋转,将当前节点指向父节点,重复步骤4。 4. 将父节点涂黑,祖父节点涂红,然后进行以下操作: (1) 如果当前节点是父节点的左子节点,将祖父节点右旋转。 (2) 如果当前节点是父节点的右子节点,将祖父节点左旋转。 以上是红黑树的基本操作,希望能够帮助您理解红黑树的原理。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值