洛谷官方题单——【算法1-1】模拟与高精度

目录

[NOIP2003 普及组] 乒乓球

题目背景

国际乒联现在主席沙拉拉自从上任以来就立志于推行一系列改革,以推动乒乓球运动在全球的普及。其中 11 11 11 分制改革引起了很大的争议,有一部分球员因为无法适应新规则只能选择退役。华华就是其中一位,他退役之后走上了乒乓球研究工作,意图弄明白 11 11 11 分制和 21 21 21 分制对选手的不同影响。在开展他的研究之前,他首先需要对他多年比赛的统计数据进行一些分析,所以需要你的帮忙。

题目描述

华华通过以下方式进行分析,首先将比赛每个球的胜负列成一张表,然后分别计算在 11 11 11 分制和 21 21 21 分制下,双方的比赛结果(截至记录末尾)。

比如现在有这么一份记录,(其中 W \texttt W W 表示华华获得一分, L \texttt L L 表示华华对手获得一分):

WWWWWWWWWWWWWWWWWWWWWWLW \texttt{WWWWWWWWWWWWWWWWWWWWWWLW} WWWWWWWWWWWWWWWWWWWWWWLW

11 11 11 分制下,此时比赛的结果是华华第一局 11 11 11 0 0 0 获胜,第二局 11 11 11 0 0 0 获胜,正在进行第三局,当前比分 1 1 1 1 1 1。而在 21 21 21 分制下,此时比赛结果是华华第一局 21 21 21 0 0 0 获胜,正在进行第二局,比分 2 2 2 1 1 1。如果一局比赛刚开始,则此时比分为 0 0 0 0 0 0。直到分差大于或者等于 2 2 2,才一局结束。

你的程序就是要对于一系列比赛信息的输入( WL \texttt{WL} WL 形式),输出正确的结果。

输入格式

每个输入文件包含若干行字符串,字符串由大写的 W \texttt W W L \texttt L L E \texttt E E 组成。其中 E \texttt E E 表示比赛信息结束,程序应该忽略 E \texttt E E 之后的所有内容。

输出格式

输出由两部分组成,每部分有若干行,每一行对应一局比赛的比分(按比赛信息输入顺序)。其中第一部分是 11 11 11 分制下的结果,第二部分是 21 21 21 分制下的结果,两部分之间由一个空行分隔。

样例 #1

样例输入 #1

WWWWWWWWWWWWWWWWWWWW
WWLWE

样例输出 #1

11:0
11:0
1:1

21:0
2:1

提示

每行至多 25 25 25 个字母,最多有 2500 2500 2500 行。

(注:事实上有一个测试点有 2501 2501 2501 行数据。)

【题目来源】

NOIP 2003 普及组第一题

题解

l = input()
ls = []
ls.append(l)
while 'E' not in ls[-1]:
    l = input()
    ls.append(l)

w11 = 0
w21 = 0
l11 = 0
l21 = 0
ls11 = []
ls21 = []
for i in ls:
    for j in i:
        if j == 'E':
            break
        elif j == 'W':
            w11 += 1
        elif j == 'L':
            l11 += 1

        if (w11 == 11 or l11 == 11) and abs(w11-l11) >= 2:
            ls11.append((w11, l11))
            w11 = 0
            l11 = 0

        elif (w11 >= 11 or l11 >= 11) and abs(w11-l11) >= 2:
            ls11.append((w11, l11))
            w11 = 0
            l11 = 0

for i in ls:
    for j in i:
        if j == 'E':
            break
        elif j == 'W':
            w21 += 1
        elif j == 'L':
            l21 += 1

        if (w21 == 21 or l21 == 21) and abs(w21-l21) >= 2:
            ls21.append((w21, l21))
            w21 = 0
            l21 = 0

        elif (w21 >= 21 or l21 >= 21) and abs(w21-l21) >= 2:
            ls21.append((w21, l21))
            w21 = 0
            l21 = 0

for i in ls11:
    print('{}:{}'.format(i[0], i[1]))
print('{}:{}'.format(w11, l11))
print()
for i in ls21:
    print('{}:{}'.format(i[0], i[1]))
print('{}:{}'.format(w21, l21))

[NOIP2015 普及组] 扫雷游戏

题目背景

NOIP2015 普及组 T2

题目描述

扫雷游戏是一款十分经典的单机小游戏。在 n n n m m m 列的雷区中有一些格子含有地雷(称之为地雷格),其他格子不含地雷(称之为非地雷格)。玩家翻开一个非地雷格时,该格将会出现一个数字——提示周围格子中有多少个是地雷格。游戏的目标是在不翻出任何地雷格的条件下,找出所有的非地雷格。

现在给出 n n n m m m 列的雷区中的地雷分布,要求计算出每个非地雷格周围的地雷格数。

注:一个格子的周围格子包括其上、下、左、右、左上、右上、左下、右下八个方向上与之直接相邻的格子。

输入格式

第一行是用一个空格隔开的两个整数 n n n m m m,分别表示雷区的行数和列数。

接下来 n n n 行,每行 m m m 个字符,描述了雷区中的地雷分布情况。字符 * \texttt{*} * 表示相应格子是地雷格,字符 ? \texttt{?} ? 表示相应格子是非地雷格。相邻字符之间无分隔符。

输出格式

输出文件包含 n n n 行,每行 m m m 个字符,描述整个雷区。用 * \texttt{*} * 表示地雷格,用周围的地雷个数表示非地雷格。相邻字符之间无分隔符。

样例 #1

样例输入 #1

3 3
*??
???
?*?

样例输出 #1

*10
221
1*1

样例 #2

样例输入 #2

2 3
?*?
*??

样例输出 #2

2*1
*21

提示

对于 100 % 100\% 100%的数据, 1 ≤ n ≤ 100 , 1 ≤ m ≤ 100 1≤n≤100, 1≤m≤100 1n100,1m100

题解

a, b = map(int, input().split())
ls = []
ls1 = [[0 for _ in range(b)] for _ in range(a)]
for i in range(a):
    l = input()
    ls.append(l)
for i in range(a):  # 行
    for j in range(b):  # 列
        x = 0
        if ls[i][j] == '*':
            ls1[i][j] = '*'
        else:
            for k in range(-1, 2):
                for p in range(-1, 2):
                    if (i+k) in range(a) and j+p in range(b):
                        if ls[i+k][j+p] == '*':
                            x = x + 1
            ls1[i][j] = x
for i in ls1:
    for j in i:
        print(j, end='')
    print()

[NOIP2016 提高组] 玩具谜题

题目背景

NOIP2016 提高组 D1T1

题目描述

小南有一套可爱的玩具小人,它们各有不同的职业。

有一天,这些玩具小人把小南的眼镜藏了起来。小南发现玩具小人们围成了一个圈,它们有的面朝圈内,有的面朝圈外。如下图:

这时 singer 告诉小南一个谜题:“眼镜藏在我左数第 3 3 3 个玩具小人的右数第 1 1 1 个玩具小人的左数第 2 2 2 个玩具小人那里。”

小南发现,这个谜题中玩具小人的朝向非常关键,因为朝内和朝外的玩具小人的左右方向是相反的:面朝圈内的玩具小人,它的左边是顺时针方向,右边是逆时针方向;而面向圈外的玩具小人,它的左边是逆时针方向,右边是顺时针方向。

小南一边艰难地辨认着玩具小人,一边数着:

singer 朝内,左数第 3 3 3 个是 archer。

archer 朝外,右数第 1 1 1 个是 thinker。

thinker 朝外,左数第 2 2 2 个是 writer。

所以眼镜藏在 writer 这里!

虽然成功找回了眼镜,但小南并没有放心。如果下次有更多的玩具小人藏他的眼镜,或是谜题的长度更长,他可能就无法找到眼镜了。所以小南希望你写程序帮他解决类似的谜题。这样的谜題具体可以描述为:

n n n 个玩具小人围成一圈,已知它们的职业和朝向。现在第 1 1 1 个玩具小人告诉小南一个包含 m m m 条指令的谜題,其中第 z z z 条指令形如“向左数/右数第 s s s 个玩具小人”。你需要输出依次数完这些指令后,到达的玩具小人的职业。

输入格式

输入的第一行包含两个正整数 n , m n,m n,m,表示玩具小人的个数和指令的条数。

接下来 n n n 行,每行包含一个整数和一个字符串,以逆时针为顺序给出每个玩具小人的朝向和职业。其中 0 0 0 表示朝向圈内, 1 1 1 表示朝向圈外。保证不会出现其他的数。字符串长度不超过 10 10 10 且仅由英文字母构成,字符串不为空,并且字符串两两不同。整数和字符串之间用一个空格隔开。

接下来 m m m 行,其中第 i i i 行包含两个整数 a i , s i a_i,s_i ai,si,表示第 i i i 条指令。若 a i = 0 a_i=0 ai=0,表示向左数 s i s_i si 个人;若 a i = 1 a_i=1 ai=1,表示向右数 s i s_i si 个人。 保证 a i a_i ai 不会出现其他的数, 1 ≤ s i < n 1 \le s_i < n 1si<n

输出格式

输出一个字符串,表示从第一个读入的小人开始,依次数完 m m m 条指令后到达的小人的职业。

样例 #1

样例输入 #1

7 3
0 singer
0 reader
0 mengbier 
1 thinker
1 archer
0 writer
1 mogician 
0 3
1 1
0 2

样例输出 #1

writer

样例 #2

样例输入 #2

10 10
1 C
0 r
0 P
1 d
1 e
1 m
1 t
1 y
1 u
0 V
1 7
1 1
1 4
0 5
0 3
0 1
1 6
1 2
0 8
0 4

样例输出 #2

y

提示

样例 1 说明

这组数据就是【题目描述】中提到的例子。

子任务

子任务会给出部分测试数据的特点。如果你在解决题目中遇到了困难,可以尝试只解决一部分测试数据。

每个测试点的数据规模及特点如下表:

其中一些简写的列意义如下:

  • 全朝内:若为 √ \surd ,表示该测试点保证所有的玩具小人都朝向圈内;

  • 全左数:若为 √ \surd ,表示该测试点保证所有的指令都向左数,即对任意的 1 ≤ z ≤ m , a i = 0 1\leq z\leq m, a_i=0 1zm,ai=0

  • s = 1 s=1 s=1:若为 √ \surd ,表示该测试点保证所有的指令都只数 1 1 1 个,即对任意的 1 ≤ z ≤ m , s i = 1 1\leq z\leq m,s_i=1 1zm,si=1

职业长度为 1 1 1:若为 √ \surd ,表示该测试点保证所有玩具小人的职业一定是一个长度为 1 1 1 的字符串。

题解

a, b = map(int, input().split())    # a=小人数,b=指令数
ls = []
for i in range(a):
    l = input().strip().split()
    ls.append(l)
q = 0
for i in range(b):
    k, w = map(int, input().split())
    if ls[q][0] == '0': # in
        if k == 0:  # left
            q = (q-w) % a
        elif k == 1:    # right
            q = (q+w) % a
    elif ls[q][0] == '1':   # out
        if k == 0: # left
            q = (q+w) % a
        elif k == 1:    # right
            q = (q-w) % a
print(ls[q][1])

A+B Problem(高精)

题目描述

高精度加法,相当于 a+b problem,不用考虑负数

输入格式

分两行输入。 a , b ≤ 1 0 500 a,b \leq 10^{500} a,b10500

输出格式

输出只有一行,代表 a + b a+b a+b 的值。

样例 #1

样例输入 #1

1
1

样例输出 #1

2

样例 #2

样例输入 #2

1001
9099

样例输出 #2

10100

提示

20 % 20\% 20% 的测试数据, 0 ≤ a , b ≤ 1 0 9 0\le a,b \le10^9

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值