目录
[NOIP2003 普及组] 乒乓球
题目背景
国际乒联现在主席沙拉拉自从上任以来就立志于推行一系列改革,以推动乒乓球运动在全球的普及。其中 11 11 11 分制改革引起了很大的争议,有一部分球员因为无法适应新规则只能选择退役。华华就是其中一位,他退役之后走上了乒乓球研究工作,意图弄明白 11 11 11 分制和 21 21 21 分制对选手的不同影响。在开展他的研究之前,他首先需要对他多年比赛的统计数据进行一些分析,所以需要你的帮忙。
题目描述
华华通过以下方式进行分析,首先将比赛每个球的胜负列成一张表,然后分别计算在 11 11 11 分制和 21 21 21 分制下,双方的比赛结果(截至记录末尾)。
比如现在有这么一份记录,(其中 W \texttt W W 表示华华获得一分, L \texttt L L 表示华华对手获得一分):
WWWWWWWWWWWWWWWWWWWWWWLW \texttt{WWWWWWWWWWWWWWWWWWWWWWLW} WWWWWWWWWWWWWWWWWWWWWWLW
在 11 11 11 分制下,此时比赛的结果是华华第一局 11 11 11 比 0 0 0 获胜,第二局 11 11 11 比 0 0 0 获胜,正在进行第三局,当前比分 1 1 1 比 1 1 1。而在 21 21 21 分制下,此时比赛结果是华华第一局 21 21 21 比 0 0 0 获胜,正在进行第二局,比分 2 2 2 比 1 1 1。如果一局比赛刚开始,则此时比分为 0 0 0 比 0 0 0。直到分差大于或者等于 2 2 2,才一局结束。
你的程序就是要对于一系列比赛信息的输入( WL \texttt{WL} WL 形式),输出正确的结果。
输入格式
每个输入文件包含若干行字符串,字符串由大写的 W \texttt W W 、 L \texttt L L 和 E \texttt E E 组成。其中 E \texttt E E 表示比赛信息结束,程序应该忽略 E \texttt E E 之后的所有内容。
输出格式
输出由两部分组成,每部分有若干行,每一行对应一局比赛的比分(按比赛信息输入顺序)。其中第一部分是 11 11 11 分制下的结果,第二部分是 21 21 21 分制下的结果,两部分之间由一个空行分隔。
样例 #1
样例输入 #1
WWWWWWWWWWWWWWWWWWWW
WWLWE
样例输出 #1
11:0
11:0
1:1
21:0
2:1
提示
每行至多 25 25 25 个字母,最多有 2500 2500 2500 行。
(注:事实上有一个测试点有 2501 2501 2501 行数据。)
【题目来源】
NOIP 2003 普及组第一题
题解
l = input()
ls = []
ls.append(l)
while 'E' not in ls[-1]:
l = input()
ls.append(l)
w11 = 0
w21 = 0
l11 = 0
l21 = 0
ls11 = []
ls21 = []
for i in ls:
for j in i:
if j == 'E':
break
elif j == 'W':
w11 += 1
elif j == 'L':
l11 += 1
if (w11 == 11 or l11 == 11) and abs(w11-l11) >= 2:
ls11.append((w11, l11))
w11 = 0
l11 = 0
elif (w11 >= 11 or l11 >= 11) and abs(w11-l11) >= 2:
ls11.append((w11, l11))
w11 = 0
l11 = 0
for i in ls:
for j in i:
if j == 'E':
break
elif j == 'W':
w21 += 1
elif j == 'L':
l21 += 1
if (w21 == 21 or l21 == 21) and abs(w21-l21) >= 2:
ls21.append((w21, l21))
w21 = 0
l21 = 0
elif (w21 >= 21 or l21 >= 21) and abs(w21-l21) >= 2:
ls21.append((w21, l21))
w21 = 0
l21 = 0
for i in ls11:
print('{}:{}'.format(i[0], i[1]))
print('{}:{}'.format(w11, l11))
print()
for i in ls21:
print('{}:{}'.format(i[0], i[1]))
print('{}:{}'.format(w21, l21))
[NOIP2015 普及组] 扫雷游戏
题目背景
NOIP2015 普及组 T2
题目描述
扫雷游戏是一款十分经典的单机小游戏。在 n n n 行 m m m 列的雷区中有一些格子含有地雷(称之为地雷格),其他格子不含地雷(称之为非地雷格)。玩家翻开一个非地雷格时,该格将会出现一个数字——提示周围格子中有多少个是地雷格。游戏的目标是在不翻出任何地雷格的条件下,找出所有的非地雷格。
现在给出 n n n 行 m m m 列的雷区中的地雷分布,要求计算出每个非地雷格周围的地雷格数。
注:一个格子的周围格子包括其上、下、左、右、左上、右上、左下、右下八个方向上与之直接相邻的格子。
输入格式
第一行是用一个空格隔开的两个整数 n n n 和 m m m,分别表示雷区的行数和列数。
接下来 n n n 行,每行 m m m 个字符,描述了雷区中的地雷分布情况。字符 * \texttt{*} * 表示相应格子是地雷格,字符 ? \texttt{?} ? 表示相应格子是非地雷格。相邻字符之间无分隔符。
输出格式
输出文件包含 n n n 行,每行 m m m 个字符,描述整个雷区。用 * \texttt{*} * 表示地雷格,用周围的地雷个数表示非地雷格。相邻字符之间无分隔符。
样例 #1
样例输入 #1
3 3
*??
???
?*?
样例输出 #1
*10
221
1*1
样例 #2
样例输入 #2
2 3
?*?
*??
样例输出 #2
2*1
*21
提示
对于 100 % 100\% 100%的数据, 1 ≤ n ≤ 100 , 1 ≤ m ≤ 100 1≤n≤100, 1≤m≤100 1≤n≤100,1≤m≤100。
题解
a, b = map(int, input().split())
ls = []
ls1 = [[0 for _ in range(b)] for _ in range(a)]
for i in range(a):
l = input()
ls.append(l)
for i in range(a): # 行
for j in range(b): # 列
x = 0
if ls[i][j] == '*':
ls1[i][j] = '*'
else:
for k in range(-1, 2):
for p in range(-1, 2):
if (i+k) in range(a) and j+p in range(b):
if ls[i+k][j+p] == '*':
x = x + 1
ls1[i][j] = x
for i in ls1:
for j in i:
print(j, end='')
print()
[NOIP2016 提高组] 玩具谜题
题目背景
NOIP2016 提高组 D1T1
题目描述
小南有一套可爱的玩具小人,它们各有不同的职业。
有一天,这些玩具小人把小南的眼镜藏了起来。小南发现玩具小人们围成了一个圈,它们有的面朝圈内,有的面朝圈外。如下图:
这时 singer 告诉小南一个谜题:“眼镜藏在我左数第 3 3 3 个玩具小人的右数第 1 1 1 个玩具小人的左数第 2 2 2 个玩具小人那里。”
小南发现,这个谜题中玩具小人的朝向非常关键,因为朝内和朝外的玩具小人的左右方向是相反的:面朝圈内的玩具小人,它的左边是顺时针方向,右边是逆时针方向;而面向圈外的玩具小人,它的左边是逆时针方向,右边是顺时针方向。
小南一边艰难地辨认着玩具小人,一边数着:
singer 朝内,左数第 3 3 3 个是 archer。
archer 朝外,右数第 1 1 1 个是 thinker。
thinker 朝外,左数第 2 2 2 个是 writer。
所以眼镜藏在 writer 这里!
虽然成功找回了眼镜,但小南并没有放心。如果下次有更多的玩具小人藏他的眼镜,或是谜题的长度更长,他可能就无法找到眼镜了。所以小南希望你写程序帮他解决类似的谜题。这样的谜題具体可以描述为:
有 n n n 个玩具小人围成一圈,已知它们的职业和朝向。现在第 1 1 1 个玩具小人告诉小南一个包含 m m m 条指令的谜題,其中第 z z z 条指令形如“向左数/右数第 s s s 个玩具小人”。你需要输出依次数完这些指令后,到达的玩具小人的职业。
输入格式
输入的第一行包含两个正整数 n , m n,m n,m,表示玩具小人的个数和指令的条数。
接下来 n n n 行,每行包含一个整数和一个字符串,以逆时针为顺序给出每个玩具小人的朝向和职业。其中 0 0 0 表示朝向圈内, 1 1 1 表示朝向圈外。保证不会出现其他的数。字符串长度不超过 10 10 10 且仅由英文字母构成,字符串不为空,并且字符串两两不同。整数和字符串之间用一个空格隔开。
接下来 m m m 行,其中第 i i i 行包含两个整数 a i , s i a_i,s_i ai,si,表示第 i i i 条指令。若 a i = 0 a_i=0 ai=0,表示向左数 s i s_i si 个人;若 a i = 1 a_i=1 ai=1,表示向右数 s i s_i si 个人。 保证 a i a_i ai 不会出现其他的数, 1 ≤ s i < n 1 \le s_i < n 1≤si<n。
输出格式
输出一个字符串,表示从第一个读入的小人开始,依次数完 m m m 条指令后到达的小人的职业。
样例 #1
样例输入 #1
7 3
0 singer
0 reader
0 mengbier
1 thinker
1 archer
0 writer
1 mogician
0 3
1 1
0 2
样例输出 #1
writer
样例 #2
样例输入 #2
10 10
1 C
0 r
0 P
1 d
1 e
1 m
1 t
1 y
1 u
0 V
1 7
1 1
1 4
0 5
0 3
0 1
1 6
1 2
0 8
0 4
样例输出 #2
y
提示
样例 1 说明
这组数据就是【题目描述】中提到的例子。
子任务
子任务会给出部分测试数据的特点。如果你在解决题目中遇到了困难,可以尝试只解决一部分测试数据。
每个测试点的数据规模及特点如下表:
其中一些简写的列意义如下:
-
全朝内:若为 √ \surd √,表示该测试点保证所有的玩具小人都朝向圈内;
-
全左数:若为 √ \surd √,表示该测试点保证所有的指令都向左数,即对任意的 1 ≤ z ≤ m , a i = 0 1\leq z\leq m, a_i=0 1≤z≤m,ai=0;
-
s = 1 s=1 s=1:若为 √ \surd √,表示该测试点保证所有的指令都只数 1 1 1 个,即对任意的 1 ≤ z ≤ m , s i = 1 1\leq z\leq m,s_i=1 1≤z≤m,si=1;
职业长度为 1 1 1:若为 √ \surd √,表示该测试点保证所有玩具小人的职业一定是一个长度为 1 1 1 的字符串。
题解
a, b = map(int, input().split()) # a=小人数,b=指令数
ls = []
for i in range(a):
l = input().strip().split()
ls.append(l)
q = 0
for i in range(b):
k, w = map(int, input().split())
if ls[q][0] == '0': # in
if k == 0: # left
q = (q-w) % a
elif k == 1: # right
q = (q+w) % a
elif ls[q][0] == '1': # out
if k == 0: # left
q = (q+w) % a
elif k == 1: # right
q = (q-w) % a
print(ls[q][1])
A+B Problem(高精)
题目描述
高精度加法,相当于 a+b problem,不用考虑负数。
输入格式
分两行输入。 a , b ≤ 1 0 500 a,b \leq 10^{500} a,b≤10500。
输出格式
输出只有一行,代表 a + b a+b a+b 的值。
样例 #1
样例输入 #1
1
1
样例输出 #1
2
样例 #2
样例输入 #2
1001
9099
样例输出 #2
10100
提示
20 % 20\% 20% 的测试数据, 0 ≤ a , b ≤ 1 0 9 0\le a,b \le10^9