分布式训练三大并行策略:数据、模型与流水线并行的本质解析

截至2023年,大型语言模型的参数量已突破万亿级别(如Google PaLM 2达到3400亿参数),单卡显存容量(NVIDIA A100 80GB)与计算能力(312 TFLOPS)面临严峻挑战。分布式训练通过多维度并行策略实现:

  • 算力维度:聚合多卡计算能力
  • 存储维度:分布式参数存储
  • 通信维度:优化数据传输路径

本文将深入剖析三大并行策略的数学本质。


一、数据并行:分布式优化的数学基础

1.1 同步SGD的收敛性证明

定义:设有K个Worker,各Worker本地梯度为 g k = ∇ θ L k ( θ ) g_k = \nabla_\theta L_k(\theta) gk=θLk(θ),学习率 η \eta η,更新规则:
θ t + 1 = θ t − η ⋅ 1 K ∑ k = 1 K g k ( t ) \theta_{t+1} = \theta_t - \eta \cdot \frac{1}{K}\sum_{k=1}^K g_k^{(t)} θt+1=θtηK1k=1Kgk(t)

收敛条件(依据[Li et al., 2014]):
假设损失函数 L L L满足L-smooth且强凸,当学习率满足 η < 1 L \eta < \frac{1}{L} η<L1时,迭代误差界为:
E [ ∣ ∣ θ t − θ ∗ ∣ ∣ 2 ] ≤ ( 1 − η μ ) t ∣ ∣ θ 0 − θ ∗ ∣ ∣ 2 + η σ 2 K μ \mathbb{E}[||\theta_t - \theta^*||^2] \leq (1 - \eta\mu)^t ||\theta_0 - \theta^*||^2 + \frac{\eta\sigma^2}{K\mu} E[∣∣θtθ2](1ημ)t∣∣θ0θ2+Kμ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值