模型剪枝实战:从结构化剪枝到彩票假设(Lottery Ticket)深度解析

模型剪枝作为深度学习模型压缩的核心技术,通过移除冗余参数显著降低计算资源需求。


一、剪枝技术的数学本质与分类体系

1.1 参数空间优化视角

给定神经网络参数集合 θ ∈ R d \theta \in \mathbb{R}^d θRd,剪枝本质是寻找稀疏子集 θ ′ ⊂ θ \theta' \subset \theta θθ使得:

min ⁡ θ ′ L ( f ( x ; θ ′ ) ) s.t. ∥ θ ′ ∥ 0 ≤ k \min_{\theta'} \mathcal{L}(f(x;\theta')) \quad \text{s.t.} \quad \|\theta'\|_0 \leq k θminL(f(x;θ))s.t.θ0k

其中 ∥ ⋅ ∥ 0 \|\cdot\|_0 0 表示非零参数数量。该优化问题可分解为两个阶段:

  1. 重要性评估:建立参数重要性评分函数 S ( θ i ) S(\theta_i) S(θi)
  2. 阈值筛选:确定保留参数的比例 r = k / d r = k/d r=k/d

1.2 非结构化剪枝的数学形式化

1.2.1 局部剪枝(Layer-wise)

对第 l l l 层权重 W ( l ) ∈ R m × n W^{(l)} \in \mathbb{R}^{m \times n} W(l)Rm×n,定义剪枝掩码 M ( l ) ∈ { 0 , 1 } m × n M^{(l)} \in \{0,1\}^{m \times n} M(l){ 0,1}m×n,剪枝后权重:

W pruned ( l ) = W ( l ) ⊙ M ( l ) W_{\text{pruned}}^{(l)} = W^{(l)} \odot M^{(l)} Wpruned(l)=W(l)M(l)

其中掩码生成策略:

M i j ( l ) = { 1 if  ∣ W i j ( l ) ∣ ≥ τ ( l ) 0 otherwise M_{ij}^{(l)} = \begin{cases} 1 & \text{if } |W_{ij}^{(l)}| \geq \tau^{(l)} \\ 0 & \text{otherwise} \end{cases} Mij(l)={ 10if Wij(l)τ(l)otherwise

阈值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值