CQPSK信号产生

CQPSK可查找到的文献较少,本文以“A Brief Examination of CQPSK for CPE PHY Modulation”链接为A Brief Examination of CQPSK for CPE PHY Modulation (ieee802.org)为参考说明CQPSK的定义式,以及对定义式不连续点进行补充,并且用matlab生成波形与论文中的波形对比,验证生成方法正确性。

该文的CQPSK调制框图如下图所示,可见调制原理与CPM类信号一致,不同的是g(t)函数不一样。

g(t)的定义式如下图所示

本文档并没有\phi (t)的表达式,查找另外的资料“CQPSK presentation for 802.16.1 PHY”,链接:Lindh (ieee802.org)  \phi (t)的定义为g(t)的积分,如下图所示:

由上图可知,CQPSK再次实锤了它就是一种CPM信号。但观察g_{0}(t)的表达式发现,它在t=0时无意义,考虑到很多类似情景的做法是用t趋向0时的极限代替t=0时的取值,下面我们求g_{0}(t),t趋向0的极限。

观察发现函数由sin,cot以及t的多项式组合而成,其中cot的分母sin可与sin(\pi t/T)相消,故可用泰勒级数展开求极限,统一成多项式,然后化简即可,是不是大学时光涌上心头,呵呵。求取过程如下,直接在本人的word文档上的截图:

采用上述方法用matlab做的眼图如下图所示:

论文“A Brief Examination of CQPSK for CPE PHY Modulation”所绘制的眼图如下:

可见二者一致,问题解决,大功告成,唯一疑问是既然CPM成型函数已经很多,为啥CQPSK又搞一个新的g(t)。

如有不对的地方或疑问请留言,共同学习。如需matlab代码也请留言,有偿服务,白嫖勿扰。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值