“堆”排序

文章介绍了堆排序这一高效的排序方法,其时间复杂度为O(N*logN),远优于冒泡排序的O(N^2)。堆排序通过建大堆并使用替换法实现升序排列,详细过程包括建堆和替换法排序,整个过程不需重复建堆,从而提高效率。
摘要由CSDN通过智能技术生成

        如果还没有了解过什么是“堆”的话,那可以转移到数据结构专栏有关堆的这一篇文章,二叉树(堆)_KOBE 0824 BRYANT的博客-CSDN博客,这里详细介绍了堆的各种性质,这里就默认大家已经了解“堆”这个数据结构了。

       在这里呢我要分享一个效率非常高的排序方法,“堆排序”,它的时间复杂度能够达到惊人的  O(N*logN) ,这比冒泡排序的 O(N^2) 可要高效了不少的,你试想一下,如果N是一百万,那么(N*logN)就是两千万,但是(N^2)可是“一万亿”啊!!!这个差距是什么概念!所以堆排序的效率可要比冒泡排序的效率高得太多了。

       那么这个堆排序是怎样的呢?能够达到这种效率,接下来我们就一探究竟。

      给定你一个数组,想要进行堆排序首先得先建堆,那如果是要排升序的话,我们需要建小堆还是建大堆呢??思考5秒钟,你可能会想,这还用说吗?升序肯定是建小堆啊,小堆从上到下不就是升序吗,但是事实真的是这样吗?

      你试想一下,如果建小堆,也就意味着你的堆顶的数就是最小的,这个数就不用再动了,但是如果后面的数你需要选出次小的数放到第二个位置,那么你就需要忽略第一个数,以第二个数开始的后面的所有数看作是一个堆,然后调整找到次小的数放到第二个位置,但是以第二个数看作是堆顶的话,那么从第二个数开始的后面的数就不再是一个小堆了,那要选次小的数的话就需要重新建一个小堆,那代价太大了,还不如遍历一遍找到最小的数呢!所以排升序建小堆的话是不可取的。

那么大佬就想,排升序建小堆不行,那我就建大堆,这个大堆的堆顶就是这棵树中最大的,然后和堆的删除走同样的思路,“替换法”。用堆顶的元素和最后一个元素交换,那么堆顶的元素就来到了最后的位置,也就是升序之后的最大的数的位置,并且这里没有影响这棵树本来的性质(各节点之间的关系),然后不把这个最后的数看作是这个大堆里面的数,这时再对堆顶的数(交换上来的数)走一遍向下调整,原来的堆中的次大的数就选出来了,以此类推,就能完成对这个数组的排序了。这真是一个很绝的想法。不愧是大佬。

这里建大堆用向下调整的方法为妙,向下调整建堆的方法请参考博主的数据结构专栏的 二叉树(堆)二叉树(堆)_KOBE 0824 BRYANT的博客-CSDN博客 这一篇文章,里面有详细过程。

#include <stdio.h>
#include <assert.h>

void swap(int* a, int* b)
{
	assert(a && b);
	int tmp = *a;
	*a = *b;
	*b = tmp;
}

void AdjustDown(int* a, int parent, int n)
{
	assert(a);
	int child = parent * 2 + 1;
	while (child < n)
	{
		if (child + 1 < n && a[child+1] > a[child])
		{
			child++;
		}
		if (a[child] > a[parent])
		{
			swap(&a[child], &a[parent]);
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}
}

int main()
{
	int arr[] = { 123,63,54,36,87,963,1254 };
	int sz = sizeof(arr) / sizeof(arr[0]);
	int parent = 0;
	
	//建堆的时间复杂度是: O(N)
	for (parent = (sz - 1 - 1) / 2; parent >= 0; parent--)
	{
		AdjustDown(arr, parent, sz);
	}

	//替换法排序的时间复杂度是: O(N*logN)
	int end = sz;
	while (end--)
	{
		swap(&arr[0], &arr[end]);
		AdjustDown(arr, 0, end);
	}

	//所以堆排序的时间复杂度是:O(N+N*logN)=O(N*logN)

	int i = 0;
	for (i = 0; i < sz; i++)
	{
		printf("%d ", arr[i]);
	}
	printf("\n");

	return 0;
}

在原数组向下调整建大堆的时间复杂度为 O(N);证明如下:

 替换法排序的时间复杂度是: O(N*logN);所以整体堆排序的时间复杂度为:O(N*logN);

证明如下:

 以上就是传说中的非常牛的堆排序啦!效率极高的哦,你学会了吗?如果感觉到有所收获的话,那就动动你发财的小手点亮一下小心心,顺便关注一下博主呗!后期会持续出各种排序的方法哦,关注博主不迷路!!!

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值