范式
设计关系数据库时,遵从不同的规范要求,设计出合理的关系型数据库,这些不同的规范要求被称为不同的范式,各种范式呈递次规范,越高的范式数据库冗余越小。
关系数据库有六种范式:第一范式(1NF)、第二范式(2NF)、第三范式(3NF)、巴斯-科德范式(BCNF)、第四范式(4NF)和第五范式(5NF,又称完美范式)。
1、第一范式(1NF):
所谓第一范式(1NF)是指在关系模型中,对于添加的一个规范要求,所有的域都应该是原子性的,即数据库表的每一列都是不可分割的原子数据项,而不能是集合,数组,记录等非原子数据项。即实体中的某个属性有多个值时,必须拆分为不同的属性。在符合第一范式(1NF)表中的每个域值只能是实体的一个属性或一个属性的一部分。简而言之,第一范式就是无重复的域。
说明:在任何一个关系数据库中,第一范式(1NF)是对关系模式的设计基本要求,一般设计中都必须满足第一范式(1NF)。不过有些关系模型中突破了1NF的限制,这种称为非1NF的关系模型。换句话说,是否必须满足1NF的最低要求,主要依赖于所使用的关系模型。
2、第二范式(2NF)
在1NF的基础上,非码属性必须完全依赖于候选码(在1NF基础上消除非主属性对主码的部分函数依赖)
第二范式(2NF)是在第一范式(1NF)的基础上建立起来的,即满足第二范式(2NF)必须先满足第一范式(1NF)。第二范式(2NF)要求数据库表中的每个实例或记录必须可以被唯一地区分。选取一个能区分每个实体的属性或属性组,作为实体的唯一标识。例如在员工表中的身份证号码即可实现每个一员工的区分,该身份证号码即为候选键,任何一个候选键都可以被选作主键。在找不到候选键时,可额外增加属性以实现区分,如果在员工关系中,没有对其身份证号进行存储,而姓名可能会在数据库运行的某个时间重复,无法区分出实体时,设计辟如ID等不重复的编号以实现区分,被添加的编号或ID选作主键。(该主键的添加是在ER设计时添加,不是建库时随意添加)
第二范式(2NF)要求实体的属性完全依赖于主关键字。所谓完全依赖是指不能存在仅依赖主关键字一部分的属性,如果存在,那么这个属性和主关键字的这一部分应该分离出来形成一个新的实体,新实体与原实体之间是一对多的关系。为实现区分通常需要为表加上一个列,以存储各个实例的唯一标识。简而言之,第二范式就是在第一范式的基础上属性完全依赖于主键。
3、第三范式(3NF)
在2NF基础上,任何非主属性不依赖于其它非主属性(在2NF基础上消除传递依赖)
数据库范式
第三范式(3NF)是第二范式(2NF)的一个子集,即满足第三范式(3NF)必须满足第二范式(2NF)。简而言之,第三范式(3NF)要求一个关系中不包含已在其它关系已包含的非主关键字信息。例如,存在一个部门信息表,其中每个部门有部门编号(dept_id)、部门名称、部门简介等信息。那么在员工信息表中列出部门编号后就不能再将部门名称、部门简介等与部门有关的信息再加入员工信息表中。如果不存在部门信息表,则根据第三范式(3NF)也应该构建它,否则就会有大量的数据冗余。简而言之,第三范式就是属性不依赖于其它非主属性,也就是在满足2NF的基础上,任何非主属性不得传递依赖于主属性。
4、巴斯-科德范式(BCNF)
Boyce-Codd Normal Form(巴斯-科德范式)
在3NF基础上,任何非主属性不能对主键子集依赖(在3NF基础上消除对主码子集的依赖)
巴斯-科德范式(BCNF)是第三范式(3NF)的一个子集,即满足巴斯-科德范式(BCNF)必须满足第三范式(3NF)。通常情况下,巴斯-科德范式被认为没有新的设计规范加入,只是对第二范式与第三范式中设计规范要求更强,因而被认为是修正第三范式,也就是说,它事实上是对第三范式的修正,使数据库冗余度更小。这也是BCNF不被称为第四范式的原因。某些书上,根据范式要求的递增性将其称之为第四范式是不规范,也是更让人不容易理解的地方。而真正的第四范式,则是在设计规范中添加了对多值及依赖的要求。
关系模式的分解准则
关系模式分解原则是模式分解具有无损连接性,模式分解能够保持函数依赖。
把一个关系模式分解成若干个关系模式的过程,称为关系模式的分解。一个关系模式分解后,可以存放原来所不能存放的信息,通常称为“悬挂”的元组,这是实际所需要的,正是分解的优点。在做自然联接时,这类悬挂元组自然丢失了,但不是信息的丢失,而是合理的。
关系模式分解等价性的三个判定准则:
(1)分解具有“无损连接性”。
(2)分解要“保持函数依赖”。
(3)分解既要“保持函数依赖”,又要具有“无损连接性”。
无损连接分解
若将一个关系模式分解为两个关系模式,比较容易判别分解是否具有无损连接性。然而,若将一个关系模式分解为三个或更多个关系模式,要判别分解是否具有无损连接性需要比较复杂的算法。
下面将对于分解为两个模式的情况,可以采用以下特殊的判定准则。
二项分解定理:
关系模式 R(U,F)的一个分解ρ={R1(U1,F1),R2(U2,F2)}
具有无损连接性的充分必要的条件是 U1∩U2→U1-U2∈F+ 或 U1∩U2→U2-U1∈F+
保持函数依赖的分解
保持函数依赖的分解是指在模式的分解过程中函数依赖不能丢失的特性,及模式分解不 能破坏原来的语义。
从定义看出,保持函数依赖的分解就是指 :当一个关系模式 R 分解后,无语义丢失, 且经过分解后,原模式 R 的函数依赖关系,都分散在分解后的子模式中
判定过程:
设 R(U,F)是一个关系模式,其中 U 是它的全体属性集,F 是它的一个函数依赖集,Z 包含于 U, 则把 F+在 Z 中的所有函数依赖的集合称为 F 在 Z 上的投影,记为Πz(F),即
Πz(F)={X→Y|(X→Y∈F+)且( XY 包含于Z)}
设关系模式 R 的一个分解⍴={ R1,R2,…,Rk},F 是 R 的函数依赖集,如果 F 等价于分解各关系的并集,则称分解ρ具有函数依赖保持性