题六:递推开关问题|翻硬币
小明正在玩一个“翻硬币”的游戏。
桌上放着排成一排的若干硬币。我们用 * 表示正面,用 o 表示反面(是小写字母,不是零)。
比如,可能情形是:**oo***oooo
如果同时翻转左边的两个硬币,则变为:oooo***oooo
现在小明的问题是:如果已知了初始状态和要达到的目标状态,每次只能同时翻转相邻的两个硬币,那么对特定的局面,最少要翻动多少次呢?
我们约定:把翻动相邻的两个硬币叫做一步操作。
输入格式
两行等长的字符串,分别表示初始状态和要达到的目标状态。
输出格式
一个整数,表示最小操作步数
数据范围
输入字符串的长度均不超过100。
数据保证答案一定有解。
输入样例1:
**********
o****o****
输出样例1:
5
输入样例2:
*o**o***o***
*o***o**o***
输出样例2:
1
题解:
假设,两枚硬币间存在一个按钮,按下按钮旁边两枚硬币翻转。
将需要变化的那组硬币称为状态串,将目标的状态称为目标串。
开关一类的题要注意:一个开关按两次等于没按,也就是一个开关只能按一次。按出来的结果和按开关的顺序无关。
分析:如果状态串的第一个位置和目标串不同,因为只有第一和第二枚硬币间的按钮可以改变第一枚硬币的位置,所以无论如何必须要按下第一和第二枚硬币间的按钮,才能使得第一个位置正确,如果第一个位置和目标串相同,说明无论如何不能按第一和第二枚硬币之间的按钮。
由此性质可以得到递推规律,第一枚的状态决定了要不要翻转第一和第二枚硬币。同理,第二枚的状态决定了要不要翻转第二和第三枚硬币......
只需要遍历一遍状态串的状态,即可找出最佳方案
时间复杂度是 O(n)。空间复杂度是O(1)。
代码及注释:
#include<stdio.h>
#include<iostream>
#include<cstring>
using namespace std;
char sta[100];//状态串字符数组
char aim[100];//目标串字符数组
void turn(int p){//用来翻转硬币 的辅助函数
if(sta[p-1]=='o')sta[p-1]='*';//如果是o就变* ,*变o
else sta[p-1]='o';
if(sta[p]=='o')sta[p]='*';
else sta[p]='o';
}
int work(){
int cnt=0;//记录需要翻转多少次
for(int i=0;i<strlen(sta)-1;i++){
//对比当前位置的状态,和目标状态是否相同
if(sta[i]!=aim[i]){ //如果不同按下按钮
turn(i+1);//翻转
cnt++;//计数
}
}
return cnt;
}
int main(){
cin>>sta;
cin>>aim;
cout<<work();
return 0;
}