树状数组训练:差分应用,维护输出区间最值

差分应用

题目链接

#include<bits/stdc++.h>

using namespace std;

int n, m;
const int M = 5e5 + 9;
int tree[M];

void update(int x, int y) {
    for (int pos = x;pos <= n;pos += pos & (-pos))
        tree[pos] += y;
}

int ask(int x) {
    int ans = 0;
    for (int pos = x;pos;pos -= pos & (-pos))
        ans += tree[pos];
    return ans;
}

int main()
{
    ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
    cin >> n >> m;
    int c;int last = 0;
    //构造差分树
    for (int i = 1;i <= n;i++)cin >> c, update(i, c - last), last = c;
    while (m--) {
        int a;cin >> a;
        if (a == 1) {
            int x, y, k;cin >> x >> y >> k;
            update(x, k);
            update(y + 1, -k);
        }
        else if (a == 2) {
            int z;cin >> z;
            cout << ask(z) << '\n';
        }
    }
    return 0;
}

维护区间最值

题目链接

#include<bits/stdc++.h>

using namespace std;

const int M = 5e4 + 9;
int a[M], b[M], c[M];//数,最大,最小
int n, q;

void update(int x, int y) {
    for (;x <= n;x += x & (-x)) {
        b[x] = max(b[x], y);
        c[x] = min(c[x], y);
    }
}

int query(int l, int r) {
    int mi = 2e9;int ma = INT_MIN;
    while (l <= r) {
        for (;r - (r & (-r)) >= l;r -= r & (-r))mi = min(mi, c[r]), ma = max(ma, b[r]);
        mi = min(mi, a[r]);
        ma = max(ma, a[r]);
        r--;
    }
    return ma - mi;
}

int main()
{
    ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
    cin >> n >> q;
    for (int i = 0;i < M;i++)c[i] = INT_MAX;
    for (int i = 1;i <= n;i++) {
        cin >> a[i];
        update(i, a[i]);
    }
    while (q--) {
        int le, ri;cin >> le >> ri;
        cout << query(le, ri) << '\n';
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值