内幕揭秘:玩转MACD技术,破译股票盈利密码,提前布局翻倍收益!

作者:老余捞鱼

原创不易,转载请标明出处及原作者。

写在前面的话:或许大家经常会听到 MACD(移动平均收敛发散指标)这个指标,但具体该怎么用它来分析预测股价走势呢?本文将通过详细解析 Google 股票盈利潜力的例子,手把手教您掌握这一分析技术。此外,我还会提供一个实用的 Google Colab 笔记本工具,让你能够轻松地分析任何你感兴趣的金融产品,掌握市场动态。

一、MACD 究竟是什么?

MACD,全称为移动平均收敛发散指标(Moving Average Convergence Divergence),是投资者在股市分析中广泛采用的一种技术分析工具。简单来说,它使用两条移动平均线来帮助预测何时买入或卖出。

 MACD由纽约分析师吉拉德·埃波尔(也有说法为杰拉德·阿佩尔和福雷德·海期尔)设计发明,该指标主要基于短期和长期的指数移动平均线(EMA)之间的差异来捕捉股价变动的趋势和动能,从而辅助投资者进行买卖决策。

MACD主要由三个部分组成:

  1. MACD线:这是短期(通常为12天)和长期(通常为26天)指数移动平均线(EMA)之间的差值。
  2. 信号线:这是MACD线的9天EMA,用于生成买入和卖出信号。
  3. 柱状图:显示MACD线与信号线之间的差距,帮助交易者直观地判断趋势的强度。

二、如何使用 MACD ?

在实际交易中,可以根据MACD指标做出投资决策:

1. 交叉信号:当MACD线穿过信号线时,可能表示买入或卖出信号。MACD线从下向上穿过信号线通常被视为买入信号(金叉),而从上向下穿过则被视为卖出信号(死叉)。

  • 金叉:DIFF线自下而上与DEA线交叉,通常被认为是股价上涨的信号。金叉在0轴上方是强烈的买入信号,0轴附近表示上涨趋势刚开始,0轴下方则伴随着较高的风险但也可能有较高的回报潜力。
  • 死叉:DIFF线从上方向下穿越DEA线,是股价下跌的典型形态。高位死叉通常出现在大幅上涨行情末期,低位死叉则可能预示着下跌行情的反弹即将结束。

2.背离:当价格创出新高或新低,而MACD未能跟随时,可能预示着趋势的反转。

  • 顶背离:当股价触及新高,而MACD指标的DIFF线和DEA线没有同时达到新高时,表明股价上涨的势头可能无法持续,是潜在的卖出信号。
  • 底背离:当股价创出新低,而MACD指标的DIFF线和DEA线没有同时创出新低时,表明尽管股价呈现下降趋势,但下跌势头可能难以持续,是潜在的买入信号。

3. 趋势强度:柱状图的高度可以反映趋势的强度,柱状图越高,趋势越强。

MACD的计算方法与步骤如下:

  1. 计算短期EMA(例如12天)和长期EMA(例如26天)。
  2. 计算MACD线:MACD线 = 短期EMA - 长期EMA。
  3. 计算信号线:信号线 = MACD线的9天EMA。
  4. 计算柱状图:柱状图 = MACD线 - 信号线。

三、分步实现指南

步骤 1:导入库并获取库存数据

import yfinance as yf
import pandas as pd
import plotly.graph_objects as go

def get_stock_data(ticker, period="1y"):
    stock = yf.Ticker(ticker)
    df = stock.history(period=period)
    return df

这部分就像是设置我们的工具箱。我们将引入yfinance 来获取股票数据,引入 pandas 来进行数据处理,引入 plotly 来创建交互式图表。get_stock_data 函数是我们向雅虎财经索取股票历史数据的方法。

步骤 2:计算 MACD

def calculate_macd(df, short_period, long_period, signal_period):
    short_ema = df['Close'].ewm(span=short_period, adjust=False).mean()
    long_ema = df['Close'].ewm(span=long_period, adjust=False).mean()
    macd = short_ema - long_ema
    signal_line = macd.ewm(span=signal_period, adjust=False).mean()
    return macd, signal_line

这就是 MACD 的神奇之处!我们计算两条指数移动平均线 (EMA),将长周期 EMA 减去短周期 EMA,得到 MACD 线,然后根据 MACD 计算信号线。

步骤 3:生成买入/卖出信号

def generate_signals_and_transactions(df, macd, signal_line):
    signals = pd.DataFrame(index=df.index)
    signals['Buy'] = (macd > signal_line) & (macd.shift(1) <= signal_line.shift(1))
    signals['Sell'] = (macd < signal_line) & (macd.shift(1) >= signal_line.shift(1))
    # ... (transaction logic)
    return signals, transactions

该功能就像我们的交易机器人。它会寻找 MACD 线在信号线上方交叉的时刻(买入!)或在信号线下方交叉的时刻(卖出!)。然后根据这些信号模拟买入和卖出。

步骤 4:找到最有利的配置

# Find the most profitable configuration
    for short_period in short_periods:
        for long_period in long_periods:
            if short_period >= long_period:
                continue
            for signal_period in signal_periods:
                macd, signal_line = calculate_macd(df, short_period, long_period, signal_period)
                signals, transactions = generate_signals_and_transactions(df, macd, signal_line)
                all_transactions[f'{short_period}_{long_period}_{signal_period}'] = transactions

                if transactions:
                    df_transactions = pd.DataFrame(transactions)
                    total_pnl = df_transactions['P&L'].sum().round(2)
                    total_pnls[f'{short_period}_{long_period}_{signal_period}'] = total_pnl
                else:
                    total_pnls[f'{short_period}_{long_period}_{signal_period}'] = 0

    most_profitable = max(total_pnls, key=total_pnls.get)
    max_pnl = total_pnls[most_profitable]
    best_short, best_long, best_signal = map(int, most_profitable.split('_')))

测试各种不同的 MACD 配置,看看哪种配置在过去一年中获利最多。

步骤 5:结果可视化 

fig = go.Figure()
    fig.add_trace(go.Candlestick(
        x=df.index, open=df['Open'], high=df['High'],
        low=df['Low'], close=df['Close'], name='Candlestick'
    ))
    # ... (add MACD and signal lines, buy/sell markers)
    fig.show()

最终,我们将共同打造一张精美的交互式图表,它不仅展示了股票价格,还包括了最优化的MACD参数设置,以及所有的买入和卖出信号。这将是你个人专属的交易指挥中心,一切信息一目了然,尽在你的掌控之中!

四、Google Colab 笔记本工具

我已经为您准备好了一份 Google Colab 笔记本,其中包含了本文的源代码。您可以直接在线访问并利用我们精心设计的MACD分析公式,对Google股票(或者是您感兴趣的任何其他股票)进行深入分析!立即体验,让数据为您揭示潜在的投资机会。

有了这个开源工具的帮助,您就可以:

  • 实现股票价格和 MACD 指标的可视化;
  • 确定最有利可图的 MACD 配置;
  • 查看潜在的买入和卖出信号 ;
  • 计算潜在利润。

Google Colab 笔记本地址:https://colab.research.google.com/drive/1moUCj8Jkj7B7hOffFOrErpnsIo0xww1S?usp=sharing

五、观点总结

  • MACD技术分析是解码股市动态的关键工具,它能够帮助投资者预测股价走势,并发现最佳的买卖时机。而且MACD指标对中长期趋势的判断较为准确,但在短期暴涨暴跌的市场中可能表现迟缓。
  • 通过一个特定的MACD配置,本文举例成功揭示了Google股票的盈利潜力,这表明适当的技术分析配置对于投资成功至关重要。
  • 提供了一个实用的Google Colab笔记本工具,使读者能够自主地对Google股票或其他股票进行MACD分析,这有助于读者实践所学知识。
  •  其他注意事项包括,MACD指标的背离形态在强势行情中较为可靠,但需注意顶背离研判的准确性通常高于底背离。
  • 个人研究和专业建议的重要性,即使有了强大的分析工具,投资者也应该谨慎地做出投资决策,并考虑到市场的不确定性。在使用MACD指标时,还可以结合其他技术指标如均线、压力位、支撑位等进行综合分析。

感谢您阅读到最后,希望本文能给您带来新的收获。祝您投资顺利!如果对文中的内容有任何疑问,请给我留言,必复。


本文内容仅仅是技术探讨和学习,并不构成任何投资建议。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

老余捞鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值