作者:老余捞鱼
原创不易,转载请标明出处及原作者。
写在前面的话:或许大家经常会听到 MACD(移动平均收敛发散指标)这个指标,但具体该怎么用它来分析预测股价走势呢?本文将通过详细解析 Google 股票盈利潜力的例子,手把手教您掌握这一分析技术。此外,我还会提供一个实用的 Google Colab 笔记本工具,让你能够轻松地分析任何你感兴趣的金融产品,掌握市场动态。
一、MACD 究竟是什么?
MACD,全称为移动平均收敛发散指标(Moving Average Convergence Divergence),是投资者在股市分析中广泛采用的一种技术分析工具。简单来说,它使用两条移动平均线来帮助预测何时买入或卖出。
MACD由纽约分析师吉拉德·埃波尔(也有说法为杰拉德·阿佩尔和福雷德·海期尔)设计发明,该指标主要基于短期和长期的指数移动平均线(EMA)之间的差异来捕捉股价变动的趋势和动能,从而辅助投资者进行买卖决策。
MACD主要由三个部分组成:
- MACD线:这是短期(通常为12天)和长期(通常为26天)指数移动平均线(EMA)之间的差值。
- 信号线:这是MACD线的9天EMA,用于生成买入和卖出信号。
- 柱状图:显示MACD线与信号线之间的差距,帮助交易者直观地判断趋势的强度。
二、如何使用 MACD ?
在实际交易中,可以根据MACD指标做出投资决策:
1. 交叉信号:当MACD线穿过信号线时,可能表示买入或卖出信号。MACD线从下向上穿过信号线通常被视为买入信号(金叉),而从上向下穿过则被视为卖出信号(死叉)。
- 金叉:DIFF线自下而上与DEA线交叉,通常被认为是股价上涨的信号。金叉在0轴上方是强烈的买入信号,0轴附近表示上涨趋势刚开始,0轴下方则伴随着较高的风险但也可能有较高的回报潜力。
- 死叉:DIFF线从上方向下穿越DEA线,是股价下跌的典型形态。高位死叉通常出现在大幅上涨行情末期,低位死叉则可能预示着下跌行情的反弹即将结束。
2.背离:当价格创出新高或新低,而MACD未能跟随时,可能预示着趋势的反转。
- 顶背离:当股价触及新高,而MACD指标的DIFF线和DEA线没有同时达到新高时,表明股价上涨的势头可能无法持续,是潜在的卖出信号。
- 底背离:当股价创出新低,而MACD指标的DIFF线和DEA线没有同时创出新低时,表明尽管股价呈现下降趋势,但下跌势头可能难以持续,是潜在的买入信号。
3. 趋势强度:柱状图的高度可以反映趋势的强度,柱状图越高,趋势越强。
MACD的计算方法与步骤如下:
- 计算短期EMA(例如12天)和长期EMA(例如26天)。
- 计算MACD线:MACD线 = 短期EMA - 长期EMA。
- 计算信号线:信号线 = MACD线的9天EMA。
- 计算柱状图:柱状图 = MACD线 - 信号线。
三、分步实现指南
步骤 1:导入库并获取库存数据
import yfinance as yf
import pandas as pd
import plotly.graph_objects as go
def get_stock_data(ticker, period="1y"):
stock = yf.Ticker(ticker)
df = stock.history(period=period)
return df
这部分就像是设置我们的工具箱。我们将引入yfinance
来获取股票数据,引入 pandas
来进行数据处理,引入 plotly
来创建交互式图表。get_stock_data
函数是我们向雅虎财经索取股票历史数据的方法。
步骤 2:计算 MACD
def calculate_macd(df, short_period, long_period, signal_period):
short_ema = df['Close'].ewm(span=short_period, adjust=False).mean()
long_ema = df['Close'].ewm(span=long_period, adjust=False).mean()
macd = short_ema - long_ema
signal_line = macd.ewm(span=signal_period, adjust=False).mean()
return macd, signal_line
这就是 MACD 的神奇之处!我们计算两条指数移动平均线 (EMA),将长周期 EMA 减去短周期 EMA,得到 MACD 线,然后根据 MACD 计算信号线。
步骤 3:生成买入/卖出信号
def generate_signals_and_transactions(df, macd, signal_line):
signals = pd.DataFrame(index=df.index)
signals['Buy'] = (macd > signal_line) & (macd.shift(1) <= signal_line.shift(1))
signals['Sell'] = (macd < signal_line) & (macd.shift(1) >= signal_line.shift(1))
# ... (transaction logic)
return signals, transactions
该功能就像我们的交易机器人。它会寻找 MACD 线在信号线上方交叉的时刻(买入!)或在信号线下方交叉的时刻(卖出!)。然后根据这些信号模拟买入和卖出。
步骤 4:找到最有利的配置
# Find the most profitable configuration
for short_period in short_periods:
for long_period in long_periods:
if short_period >= long_period:
continue
for signal_period in signal_periods:
macd, signal_line = calculate_macd(df, short_period, long_period, signal_period)
signals, transactions = generate_signals_and_transactions(df, macd, signal_line)
all_transactions[f'{short_period}_{long_period}_{signal_period}'] = transactions
if transactions:
df_transactions = pd.DataFrame(transactions)
total_pnl = df_transactions['P&L'].sum().round(2)
total_pnls[f'{short_period}_{long_period}_{signal_period}'] = total_pnl
else:
total_pnls[f'{short_period}_{long_period}_{signal_period}'] = 0
most_profitable = max(total_pnls, key=total_pnls.get)
max_pnl = total_pnls[most_profitable]
best_short, best_long, best_signal = map(int, most_profitable.split('_')))
测试各种不同的 MACD 配置,看看哪种配置在过去一年中获利最多。
步骤 5:结果可视化
fig = go.Figure()
fig.add_trace(go.Candlestick(
x=df.index, open=df['Open'], high=df['High'],
low=df['Low'], close=df['Close'], name='Candlestick'
))
# ... (add MACD and signal lines, buy/sell markers)
fig.show()
最终,我们将共同打造一张精美的交互式图表,它不仅展示了股票价格,还包括了最优化的MACD参数设置,以及所有的买入和卖出信号。这将是你个人专属的交易指挥中心,一切信息一目了然,尽在你的掌控之中!
四、Google Colab 笔记本工具
我已经为您准备好了一份 Google Colab 笔记本,其中包含了本文的源代码。您可以直接在线访问并利用我们精心设计的MACD分析公式,对Google股票(或者是您感兴趣的任何其他股票)进行深入分析!立即体验,让数据为您揭示潜在的投资机会。
有了这个开源工具的帮助,您就可以:
- 实现股票价格和 MACD 指标的可视化;
- 确定最有利可图的 MACD 配置;
- 查看潜在的买入和卖出信号 ;
- 计算潜在利润。
Google Colab 笔记本地址:https://colab.research.google.com/drive/1moUCj8Jkj7B7hOffFOrErpnsIo0xww1S?usp=sharing
五、观点总结
- MACD技术分析是解码股市动态的关键工具,它能够帮助投资者预测股价走势,并发现最佳的买卖时机。而且MACD指标对中长期趋势的判断较为准确,但在短期暴涨暴跌的市场中可能表现迟缓。
- 通过一个特定的MACD配置,本文举例成功揭示了Google股票的盈利潜力,这表明适当的技术分析配置对于投资成功至关重要。
- 提供了一个实用的Google Colab笔记本工具,使读者能够自主地对Google股票或其他股票进行MACD分析,这有助于读者实践所学知识。
- 其他注意事项包括,MACD指标的背离形态在强势行情中较为可靠,但需注意顶背离研判的准确性通常高于底背离。
- 个人研究和专业建议的重要性,即使有了强大的分析工具,投资者也应该谨慎地做出投资决策,并考虑到市场的不确定性。在使用MACD指标时,还可以结合其他技术指标如均线、压力位、支撑位等进行综合分析。
感谢您阅读到最后,希望本文能给您带来新的收获。祝您投资顺利!如果对文中的内容有任何疑问,请给我留言,必复。
本文内容仅仅是技术探讨和学习,并不构成任何投资建议。