力扣 5. 最长回文子串 C++


区间dp方法

状态设计

dp[i][j] :s[i~j]是否是回文串

注意:dp[i][j]是bool类型

转移

  • s[i] == s[j] dp[i][j] = dp[i + 1][j - 1]

两头相同看中间是否是回文串

  • s[i] != s[j] dp[i][j] = false

两头不同肯定不是

初始化

  • dp[i][i] = true

长度为1肯定是回文串

  • dp[i][i + 1] = (s[i] == s[i + 1])

长度为2字母相同是回文串

地推顺序

小区间 -> 大区间

代码

const int N = 1005;
bool dp[N][N];
class Solution {
public:
    string longestPalindrome(string s) {
        int n = s.size();
        if (n == 1)
            return s;
        
        string ans = s.substr(0, 1);

        for (int i = 0; i < n; i ++)
            dp[i][i] = true;
        
        for (int len = 2; len <= n; len ++) {
            for (int i = 0; i + len - 1 < n; i ++) {
                int j = i + len - 1;
                if (s[i] != s[j])
                    dp[i][j] = false;
                else {
                    if (len == 2)
                        dp[i][j] = true;
                    else
                        dp[i][j] = dp[i + 1][j - 1];
                }
                if (dp[i][j] && ans.size() < len)
                    ans = s.substr(i, len);
            }
        }
        
        return ans;
    }
};

中心扩展法

思路

根据回文串的属性 从它的中点向外扩散的两个元素相同

  • 回文串长度为奇

假设字符串为 “abcba”

  • 回文串长度为偶

假设字符串为 “abba”

这样我们可以枚举中心,然后向两边扩散,扩散到 s[i] != s[j] 那么以这个点为中心的最长回文串我们就找到了 然后在记录一下最长的就行了!是不是比 dp 做法要更简单

代码

const int N = 1005;
bool dp[N][N];

class Solution {
    public:
        void expend(string s, int L, int R, int &l, int &r) {
            while (L >= 0 && R < s.size() && s[L] == s[R])
                L --, R ++;
            l = L + 1, r = R - 1;
        }

        string longestPalindrome(string s) {
            int n = s.size();
            if (n == 1)
                return s;

            int st = 0, ed = 0; //区间起点和终点
            int l1, r1, l2, r2;
            for (int i = 0; i < n; i ++) {
                expend(s, i, i, l1, r1); //得到长度为奇数的回文串的最大长度
                expend(s, i, i + 1, l2, r2); //得到长度为奇数的回文串的最大长度
                if (r1 - l1 > ed - st)
                    st = l1, ed = r1;
                if (r2 - l2 > ed - st)
                    st = l2, ed = r2;
            }
            return s.substr(st, ed - st + 1);
        }
};

原题链接:5. 最长回文子串 - 力扣(LeetCode)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值