数据结构---堆的实现

文章目录


前言

堆(Heap)是计算机科学中一类特殊的数据结构,是最高效的优先级队列。堆通常是一个可以被看做一棵完全二叉树的数组对象。


一、什么是堆?

现实中我们通常把堆(一种二叉树)使用顺序结构的数组来存储,

大根堆:根节点的数值总是大于等于(不小于)其左右节点的数值的二叉树

小根堆:根节点的数值总是小于等于(不大于)其左右节点的数值的二叉树
堆的性质:
堆中某个节点的值总是不大于或不小于其父节点的值;
堆总是一棵完全二叉树。

二、堆的实现

1.堆的结构

//堆--数组实现--小根堆和大根堆
//小根堆--根节点的值小于其左右孩子节点的值
//大根堆--根节点的值大于其左右孩子节点的值

//以下实现以大根堆为例
typedef int HPDateType;
typedef struct Heap
{
	HPDateType* a;
	int size;//堆的元素个数
	int capacity;//堆的容量
}Heap;

2.接口实现

1. 初始化

//初始化
void HPInit(Heap* php)
{
	assert(php);
	php->a = (HPDateType*)malloc(sizeof(HPDateType) * 4);
	if (php->a == NULL)
	{
		perror("malloc fail");
		return;
	}
	php->capacity = 4;
	php->size = 0;
}

2. 销毁

//销毁
void HPDestroy(Heap* php)
{
	assert(php);
	free(php->a);
	php->a = NULL;
	php->size = php->capacity = 0;
}

3. 向上调整

//向上调整
void AdjustUp(HPDateType* a,int child)
{
	//满足大根堆的性质--根节点数值大于其左右孩子中最大的那个
	//前提:除了插入的元素其余的都保持着原有的性质
	// 即只需要判断新插入节点数值是否大于其根节点

	//已知孩子节点求其双亲计算公式:
	int parent = (child - 1) / 2;
	while (child > 0)
	{
		if (a[child] > a[parent])
		{
			//交换
			Swap(&a[child], &a[parent]);
			child = parent;
			parent = (child - 1) / 2;
		}
		else
		{
			break;
		}
	}
}

向上调整:堆插入数据的调整方法,插入数据以后需要保持堆原有的性质,也是建堆的方式之一。其传递参数为孩子节点,利用孩子节点求取其双亲节点,同时因为其余的节点(除去插入数据以外的节点)都保持着其原有的性质,只需要依次比较插入的节点和双亲节点的数值,往复进行。

4. 插入


//插入
void HPPush(Heap* php, HPDateType x)
{
	assert(php);
	//判断是否需要扩容
	if (php->size == php->capacity)
	{
		HPDateType* tmp = (HPDateType*)realloc(php->a, sizeof(HPDateType) * php->capacity * 2);
		if (tmp == NULL)
		{
			perror("realloc fail");
			return;
		}
		php->a = tmp;
		php->capacity *= 2;
	}

	php->a[php->size] = x;
	php->size++;
	//插入需要保证堆的性质不改变
	//需要对插入元素进行向上调整,其左右子树性质才能不变
	AdjustUp(php->a, php->size - 1);
}

插入数据:1.要进行判断是否需要扩容,

2.对新插入数据进行向上调整,以保证堆的性质不变

5. 向下调整

//向下调整
void AdjustDown(HPDateType* a, int size, int parent)
{
	//大根堆性质:根节点的数值大于其左右孩子中较大的那个
	
	//默认其左孩子较大
	int child = parent * 2 + 1;
	
	//当到达最后一个叶子节点时即可停止交换
	while (child < size)
	{
		if (child + 1 < size && a[child] < a[child + 1])
		{
			//为什么要对chid+1进行判断?
			//因为需要进行左右孩子的比较,防止越界
			child++;
		}
		//定义在里面原因:需要每次都进行判断

		if (a[child] > a[parent])
		{
			Swap(&a[child], &a[parent]);
			parent = child;
			child = 2 * parent + 1;
		}
		else
		{
			break;
		}
	}
}

参数讲解:1.size的作用:进行判断是否有数组越界访问

2.parent的作用:因为是需要对堆进行删除,要进行数据的交换,而仍旧需要保证堆本身的性质不变,传递parent数值,为确定其孩子节点的数值依旧小于其双亲节点

查漏补缺:1. 需要对于左右节点进行比较,因为大根堆,其根节点始终不小于其孩子节点,先比较出大的孩子节点,然后再进行孩子节点和双亲的比较

2. 需要利用size对child+1进行判断,保证不会越界访问

3. 循环终止条件:直至到最后一个叶子节点既可停止

6. 删除

//删除
void HPPop(Heap* php)
{
	//删除的本意是对于堆进行修改,即删除堆顶元素

	assert(php);
	//交换堆顶元素和最后一个元素,然后进行删除
	Swap(&php->a[0], &php->a[php->size - 1]);

	php->size--;
	//保证堆的性质不发生改变--向下调整
	AdjustDown(php->a, php->size, 0);

}

删除需注意调用向下调整函数时,里面的size是减去交换堆顶元素,进行删除后的size

7. 其余接口

//返回堆顶元素
HPDateType HPTop(Heap* php)
{
	assert(php);
	return php->a[0];
}

//判空
bool HPEmpty(Heap* php)
{
	assert(php);
	return php->size == 0;
}

//返回元素个数
int HPSize(Heap* php)
{
	assert(php);
	return php->size;
}

void Swap(HPDateType* p1, HPDateType* p2)
{
	HPDateType tmp = *p1;
	*p1 = *p2;
	*p2 = tmp;
}

其余接口较为简单实现,只需要注意进行相关断言指针即可


总结

堆,数据结构的一种很有用的结构,其不仅可以适用于存储数据,另外可以对数据进行排序,堆排序,一种非常高效的排序方式,在后续会进行介绍,身为学习者的我们需要对堆的实现做到胸有成竹,从而才能更好的使用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值