贪心算法------单源最短路径问题(Dijkstra)

 1.问题描述

    给定一个带权有向图G=(V,E),每条边的权值都是非负实数,另外,给定一个源点,计算从源点到其他各个顶点的最短路径长度

  2.算法设计

     步骤1.设置带权邻接矩阵C如果<u,x>属于E,令C[u][x]=<u,x>的权值,否则C[u][x]无穷大,用一维数组dis来记录从源点到各个顶点的最短路径长度,用一维数组p

                记录某顶点到源点的最短路径上的该顶点的前驱顶点

     步骤2.初始化,令集合S={u},对于集合V-S中的所有顶点x,设置dis[x]=C[u][x],如果顶点i与源点相邻,设置p[i]=-1,否则p[i]=u

     步骤3.在集合V-S中按照贪心来找到使得dis[x]具有最小值的顶点t,

     步骤4.将顶点t加入集合S中,同时更新集合V-S

     步骤5.如果集合V-S为空,算法结束,否则,继续步骤6

     步骤6.对集合V-S中的所有与顶点t相邻的顶点x。如果dis[x]>dis[t]+C[t][x],则dis[x]=dis[t]+C[t][x]并设置p[x]=t

3.算法实现

    #include<stdio.h>
    #include<string.h>
    #define INF 1000
    #define N 100
    int C[N][N];
    float dis[N];aaaaaa
    int p[N];
     /*
          n :节点个数。u:源点;C[n][n]:二维数组记录节点间的长度,
          dis[]:记录某顶点到源点的最短路径长度,p:记录某顶点到源点
          的最短路径上的该顶点的前驱顶点
    */
     void Dijkstra(int n,int u)
    {
         bool s[N+1];//如果s[i]等于true,说明顶点i已加入集合S中,否则顶点i属于集合V-S
         int i,j;
         for(i=1;i<=n;i++)
         {
             dis[i]=C[u][i];//初始化各个顶点到源点的最短路径长度
             s[i]=false;
             if(dis[i]==INF)
                p[i]=-1; //说明顶点i与源点不相邻
             else
               p[i]=u;//说明顶点i与源点相邻
            }
        dis[u]=0;
        s[u]=true;//初始时,集合S中只有一个元素:源点
        for(i=1;i<=n;i++)
        {
            int temp=INF;
            int t=u;
           for(j=1;j<=n;j++)//在集合V-S中找到距离源点最近的顶点t
           {
                 if((!s[j])&&dis[j]<temp)
                 {
                     t=j;
                     temp=dis[j];
                    }
                }
           s[t]=true;//把t加入集合S中
           for(j=1;j<=n;j++)
           {
                if((!s[j])&&C[t][j]<INF)
                {
           if(dis[j]>(dis[t]+C[t][j]))//如果新距离比原距离短,就更新
          {
              dis[j]=dis[t]+C[t][j];
              p[j]=t;//前驱节点更新
             }
         }
      }
   }
 }
   int main()
   {

       int i,j,n,u,num;
       printf("输入节点数:\n");
       scanf("%d",&n);
       printf("输入源点(序号):\n");
       scanf("%d",&u);
       printf("输入边数:\n");
       scanf("%d",&num);
       for(i=1;i<=n;i++) //为dis[]数组赋初值Max
       {
           for(j=1;j<=n;j++)
          {
              C[i][j]=INF;
             }
          }
       for(i=1;i<=num;i++)
       {
           int x,y;
           printf("输入始节点:\n");
           scanf("%d",&x);
           printf("输入末节点:\n");
           scanf("%d",&y);
           printf("输入赋予边的权值:\n");
           scanf("%d",&C[x][y]);
           printf("边的(%d,%d)权值为:%d\n",x,y,C[x][y]);

           }
           Dijkstra(n,u);
          for(i=1;i<=n;i++)//输入源点到各顶点的最短路径
          {
                if(i!=u)
                printf("源点%d到顶点%d的最短路径值为%f\n",u,i,dis[i]);

             }

     }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

是原来的你吗

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值