1.排序的概念及其运用
1.1 排序的概念
1.2 常见的排序算法
1.3 排序接口的实现
#include<stdio.h>
#include<stdlib.h>
#include<stdbool.h>
void PrintArray(int* a, int n);
void InsertSort(int* a, int n);
void ShellSort(int* a, int n);
void BubbleSort(int* a, int n);
void SelectSort(int* a, int n);
void BubblleSort(int* a, int n);
void SelectSort(int* a, int n);
void HeapSort(int* a, int n);
void QuickSort(int* a, int begin, int end);
2.常见排序算法的实现
2.1 插入排序
插入排序是一种简单的插入排序算法,基本思想是:

2.2.1直接插入排序

void InsertSort(int* a, int n)
{
//[0,end]有序,插入tmp依旧有序
for (int i = 1; i < n; i++)
{
int end = i - 1;
int tmp = a[i];
while (end >= 0)
{
if (a[end] > tmp)
{
a[end + 1] = a[end];
end--;
}
else
{
break;
}
}
a[end + 1] = tmp;
}
}
如果从头开始比较的话,我们想象一下摸牌的过程,当我们摸了第一张牌的时候,那么这张牌就是有序的,摸第二张牌的时候要跟第一张牌进行比较,如果小就放在前面,比它大就放在后面。摸第三张牌就跟第二张进行比较,以此类推,摸第n张牌就跟第n-1张进行比较。其中第一张牌就是end,要摸的牌就是tmp,依次比较就要end--,我们要以计算机的思路进行比较,实际生活中我们一眼就能看出牌应该在哪个位置。OK,这就是插入排序的逻辑思路了。
2.2.2 希尔排序








通过上面的图片我们来讨论一下gap的取值该怎样取呢 ?
我们令gap=n,gap=gap/3+1。加1的原因是保证最后一次一定是1。当gap==1时就是直接插入排序。当然你也可以用gap/2,这样不管是奇数还是偶数都能保证最后一次一定是1.
代码示例:
void ShellSort(int* a, int n)
{
int gap = n;
while (gap > 1)
{
gap = gap / 3 + 1;//加1保证最后一次一定是1
for (int j = 0; j < gap; j++)
{
for (int i = j; i < n - gap; i += gap)//i<n时会有越界的风险
{
int end = i;
int tmp = a[end + gap];
while (end >= 0)
{
if (a[end] > tmp)
{
a[end + gap] = a[end];
end -= gap;
}
else
{
break;
}
}
a[end + gap] = tmp;
}
}
}
}
2.2 选择排序
2.2.1基本思想
2.2.2 直接选择排序

void Swap(int* p1, int* p2)
{
int tmp = *p1;
*p1 = *p2;
*p2 = tmp;
}
void SelectSort(int* a, int n)
{
int begin = 0, end = n - 1;
while (begin < end)
{
int maxi = begin, mini = begin;
for (int i = begin; i <= end; i++)
{
if (a[i] > a[maxi])
maxi = i;
if (a[i] < a[mini])
mini = i;
}
Swap(&a[begin], &a[mini]);
if (begin == maxi)
maxi = mini;
Swap(&a[end], &a[maxi]);
++begin;
--end;
}
}
2.2.3 堆排序
void AdjustDown(int* a, int n, int parent)
{
int child = parent * 2 + 1;
while (child < n)
{
if (child + 1 < n && a[child + 1] > a[child])//child+1防止越界
{
++child;
}
if (a[child] > a[parent])
{
Swap(&a[child], &a[parent]);
parent = child;
child = parent * 2 + 1;
}
else
{
break;
}
}
}
void HeapSort(int* a, int n)
{
//建大堆
for (int i = (n - 1 - 1) / 2; i >= 0; i--)
{
AdjustDown(a, n, i);
}
int end = n - 1;
while (end > 0)
{
Swap(&a[0], &a[end]);
AdjustDown(a, end, 0);
--end;
}
}
2.3 交换排序
2.3.1 基本思想
2.3.2 冒泡排序
冒泡排序是我们最熟悉的一种排序算法了,就不过多介绍了。直接给出代码
void BubbleSort(int* a, int n)
{
for (int j = 0; j < n; ++j)
{
bool exchange = false;
for (int i = 1; i < n - j; i++)
{
if (a[i - 1] > a[i])
{
int tmp = a[i];
a[i] = a[i - 1];
a[i - 1] = tmp;
exchange = true;
}
}
if (exchange == false)
{
break;
}
}
}
动图演示:
2.3.3 快速排序





int PartSort1(int* a, int left, int right)
{
int keyi = left;
while (left < right)
{
//右边找小
while (left < right && a[right] >= a[keyi])
{
--right;
}
//左边找大
while (left < right && a[left] <= a[keyi])
{
++left;
}
Swap(&a[left], &a[right]);
}
Swap(&a[keyi], &a[left]);//相遇就交换keyi和left
return left;
}
void QuickSort(int* a, int begin, int end)
{
if (begin > end)
return;
int keyi = PartSort1(a, begin, end);
//int keyi = PartSort2(a, begin, end);
//int keyi = PartSort3(a, begin, end);
QuickSort(a, begin, keyi - 1);
QuickSort(a, keyi + 1, end);
}
这里面有些问题需要注意,如何保证相遇位置就一定比key小
2.挖坑法
动图示例:
挖坑法比较好理解,就不用过多解释了
代码示例:
//挖坑法
int PartSort2(int* a, int left, int right)
{
int key = a[left];
int hole = left;
while (left < right)
{
while (left < right && a[right] >= key)
{
--right;
}
a[hole] = a[right];
hole = right;
while (left < right && a[left] <= key)
{
++left;
}
a[hole] = a[left];
hole = left;
}
a[hole] = key;
return hole;
}
3.前后指针法
动图演示:
思想:1.最开始prev和cur是相邻的。
2.当cur遇到比key大的值以后,它们之间的值都是比key大的值
3.cur找小,找到小的以后,先++prev,然后交换prev的位置和cur的位置,相当于把大的翻滚式往右边推的同时把小的换到左边
代码示例:
int PartSort3(int* a, int left, int right)
{
int prev = left;
int cur = left + 1;
int keyi = left;
while (cur <= right)
{
if (a[cur] < a[keyi] && ++prev != cur)
{
Swap(&a[prev], &a[cur]);
}
++cur;
}
Swap(&a[prev], &a[keyi]);
keyi = prev;
return keyi;
}
快速排序优化:
每次选key都是中位数,效率就很好。当数据有序的时候,变成最坏,时间复杂度是O(N^2)。
解决方法是1.随机数选key 2.三数取中
三数取中代码
//三数取中
int GetMidIndex(int* a, int left, int right)
{
int mid = (left + right) / 2;
if (a[left] < a[mid])
{
if (a[mid] < a[right])
return mid;
else if (a[left] < a[right])
return right;
else
return left;
}
else
{
if (a[mid] > a[right])
return mid;
else if (a[left] > a[right])
return right;
else
return left;
}
}
然后再三个版本中加入这2行代码
2.3.4 快速排序的非递归实现
void QuickSortNonR(int* a, int begin, int end)
{
ST st;
STInit(&st);
STPush(&st,end);
STPush(&st,begin);
while (!STEmpty(&st))
{
int left = STTop(&st);
STPop(&st);
int right = STTop(&st);
STPop(&st);
int keyi = PartSort1(a, left, right);
// [left, keyi-1] keyi [keyi+1, right]
if (keyi + 1 < right)
{
STPush(&st, right);
STPush(&st, keyi+1);
}
if (left < keyi - 1)
{
STPush(&st, keyi - 1);
STPush(&st, left);
}
}
STDestroy(&st);
}
2.3.5 各种排序算法的比较
我们可以用10万个数据来看一看这几种排序的时间差异,看一下哪种算法好
void TestOP()
{
srand(time(0));
const int N = 100000;
int* a1 = (int*)malloc(sizeof(int) * N);
int* a2 = (int*)malloc(sizeof(int) * N);
int* a3 = (int*)malloc(sizeof(int) * N);
int* a4 = (int*)malloc(sizeof(int) * N);
int* a5 = (int*)malloc(sizeof(int) * N);
int* a6 = (int*)malloc(sizeof(int) * N);
int* a7 = (int*)malloc(sizeof(int) * N);
for (int i = 0; i < N; ++i)
{
a1[i] = rand();
a2[i] = a1[i];
a3[i] = a1[i];
a4[i] = a1[i];
a5[i] = a1[i];
a6[i] = a1[i];
a7[i] = a1[i];
}
int begin1 = clock();
InsertSort(a1, N);
int end1 = clock();
int begin2 = clock();
ShellSort(a2, N);
int end2 = clock();
int begin3 = clock();
BubbleSort(a3, N);
int end3 = clock();
int begin4 = clock();
SelectSort(a4, N);
int end4 = clock();
int begin5 = clock();
HeapSort(a5, N);
int end5 = clock();
int begin6 = clock();
QuickSort(a6, 0, N - 1);
int end6 = clock();
printf("InsertSort:%d\n", end1 - begin1);
printf("ShellSort:%d\n", end2 - begin2);
printf("BubbleSort:%d\n", end3 - begin3);
printf("SelcetSort:%d\n", end4 - begin4);
printf("HeapSort:%d\n", end5 - begin5);
printf("QuickSort:%d\n", end6 - begin6);
free(a1);
free(a2);
free(a3);
free(a4);
free(a5);
free(a6);
free(a7);
}
2.4 归并排序
2.4.1概念
- 分割:将待排序的序列不断地⼆分为两个⼦序列,直到每个⼦序列只剩下⼀个元素。
- 归并:将两个有序⼦序列合并为⼀个有序序列。
2.4.2 基本思想


2.4.3 非递归实现方式
void MergeSortNonR(int* a, int n)
{
int* tmp = (int*)malloc(sizeof(int) * n);
int gap = 1;
while (gap < n)
{
int j = 0;
for (int i = 0; i < n; i += 2 * gap)
{
// 每组的合并数据
int begin1 = i, end1 = i + gap - 1;
int begin2 = i + gap, end2 = i + 2 * gap - 1;
if (end1 >= n || begin2 >= n)
{
break;
}
// 修正
if (end2 >= n)
{
end2 = n - 1;
}
while (begin1 <= end1 && begin2 <= end2)
{
if (a[begin1] < a[begin2])
{
tmp[j++] = a[begin1++];
}
else
{
tmp[j++] = a[begin2++];
}
}
while (begin1 <= end1)
{
tmp[j++] = a[begin1++];
}
while (begin2 <= end2)
{
tmp[j++] = a[begin2++];
}
// 归并一组,拷贝一组
memcpy(a + i, tmp + i, sizeof(int) * (end2 - i + 1));
}
gap *= 2;
}
free(tmp);
}
2.3.4 递归方式实现
void _MergeSort(int* a,int begin, int end,int* tmp)
{
if (begin == end)
return;
int mid = (begin + end) / 2;
// [begin, mid] [mid+1, end]
_MergeSort(a, begin, mid, tmp);
_MergeSort(a, mid+1, end, tmp);
int begin1 = begin, end1 = mid;
int begin2 = mid + 1, end2 = end;
int i = begin;
while (begin1 <= end1 && begin2 <= end2)
{
if (a[begin1] < a[begin2])
{
tmp[i++] = a[begin1++];
}
else
{
tmp[i++] = a[begin2++];
}
}
while (begin1 <= end1)
{
tmp[i++] = a[begin1++];
}
while (begin2 <= end2)
{
tmp[i++] = a[begin2++];
}
memcpy(a + begin, tmp + begin, sizeof(int) * (end - begin + 1));
}
void MergeSort(int* a, int n)
{
int* tmp = (int*)malloc(sizeof(int) * n);
_MergeSort(a, 0, n - 1, tmp);
free(tmp);
}
- 非递归方式实现的空间复杂度更低:递归⽅式需要使⽤系统栈来保存函数调⽤信息,当递归深度较大时,可能会导致栈溢出。而非递归⽅式可以使⽤循环和迭代来实现,不需要使⽤额外的空间,因此空间复杂度更低。
- 非递归方式实现的效率更⾼:递归⽅式需要频繁地进行函数调⽤和返回操作,每次调⽤和返回都会带来额外的开销。而非递归方式只需要进⾏简单的循环和迭代,效率更高。
- ⾮递归方式实现的代码更易于理解和调试:递归方式实现的代码⽐较难以理解和调试,因为递归过程中函数的调⽤顺序⽐较复杂。而非递归方式实现的代码结构更加清晰,易于理解和调试。