单源最短路——堆优化dijkstra

//单源最短路——堆优化dijkstra O(n^2)
//dis[1] = 0,dis[i] = inf;  起点是1
#include<bits/stdc++.h>
using namespace std;
const int N = 100010;
using pii = pair<int,int>;
int n,m;

int h[N],e[N],w[N],ne[N],cnt;//链式前向星
void add(int a,int b,int c){
    e[cnt] = b,w[cnt] = c,ne[cnt] = h[a],h[a] = cnt++;
}
void init(){
    memset(h,-1,sizeof h);
}

int dist[N];//记录距离
bool vis[N];
int dijkstra(){
    memset(dist,0x3f,sizeof dist);
    dist[1] = 0;
    //用小根堆,堆顶维护为已确定的点的最小距离
    priority_queue<pii,vector<pii>,greater<pii>>heap;//小根堆
    heap.push({0,1});//记录距离和点,排序需求,距离放第一位
    while(heap.size()){
        auto t = heap.top();
        heap.pop();
        int dis = t.first,id = t.second;
        if(vis[id])continue;//当前点的最短距离是否确定
        vis[id] = true;//下来要确定id连接下的最短距离
        for(int i = h[id]; ~i; i = ne[i]){
            int j = e[i];
            if(dist[j] > dis + w[i]){/*如果从1到j的代价大于从1
            到t再到j就更新并把j的结果加入小根堆*/
                dist[j] = dis + w[i];
                heap.push({dist[j], j});
            }
        }
    }
    return dist[n] == 0x3f3f3f3f ? -1 : dist[n];

}


int main(){
    init();
    scanf("%d%d",&n,&m);
    while(m--){
        int a,b,c;
        scanf("%d%d%d",&a,&b,&c);
        add(a,b,c);
    }
    printf("%d\n",dijkstra());

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值