//单源最短路——堆优化dijkstra O(n^2)
//dis[1] = 0,dis[i] = inf; 起点是1
#include<bits/stdc++.h>
using namespace std;
const int N = 100010;
using pii = pair<int,int>;
int n,m;
int h[N],e[N],w[N],ne[N],cnt;//链式前向星
void add(int a,int b,int c){
e[cnt] = b,w[cnt] = c,ne[cnt] = h[a],h[a] = cnt++;
}
void init(){
memset(h,-1,sizeof h);
}
int dist[N];//记录距离
bool vis[N];
int dijkstra(){
memset(dist,0x3f,sizeof dist);
dist[1] = 0;
//用小根堆,堆顶维护为已确定的点的最小距离
priority_queue<pii,vector<pii>,greater<pii>>heap;//小根堆
heap.push({0,1});//记录距离和点,排序需求,距离放第一位
while(heap.size()){
auto t = heap.top();
heap.pop();
int dis = t.first,id = t.second;
if(vis[id])continue;//当前点的最短距离是否确定
vis[id] = true;//下来要确定id连接下的最短距离
for(int i = h[id]; ~i; i = ne[i]){
int j = e[i];
if(dist[j] > dis + w[i]){/*如果从1到j的代价大于从1
到t再到j就更新并把j的结果加入小根堆*/
dist[j] = dis + w[i];
heap.push({dist[j], j});
}
}
}
return dist[n] == 0x3f3f3f3f ? -1 : dist[n];
}
int main(){
init();
scanf("%d%d",&n,&m);
while(m--){
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
add(a,b,c);
}
printf("%d\n",dijkstra());
return 0;
}
单源最短路——堆优化dijkstra
最新推荐文章于 2024-11-02 09:55:19 发布