Potions (Hard Version) and (Easy Version)(背包DP + 反悔贪心)

@[TOC](Potions (Hard Version) and (Easy Version))

一、Potions(Easy Version)

1、问题

在这里插入图片描述

2、分析(背包DP + 贪心)

简而言之就是我们需要从左到右开始选数字,选的过程中我们需要保证我们选的数字的和始终是大于等于0的,在满足这个条件的情况下求出我们所选的数字的个数的最大值。

由于这个简单版本的数据范围是2000,还是比较小的,所以我们可以使用 O ( n 2 ) O(n^2) O(n2)的DP来解决。

假设我们的DP数组是: f [ i ] [ j ] f[i][j] f[i][j]

这里的一个难点就是这个数组的含义是什么?

我们这里的定义是:在前 i i i个数字里面选,恰好选择 j j j个数字时,数字之和的最大值。

我们先来解释一下,为什么我们要存储最大值。

假设我们在前 i i i个物品里选择了 j j j个,那么这 j j j个数字的和越大,我们后续的选择空间越大,这是一种贪心的想法。

那么我们如何求出最后的结果呢?

根据题目要求,我们的 f [ i ] [ j ] ≥ 0 f[i][j]\geq 0 f[i][j]0

所以我们可以去遍历 f [ n ] [ i ] f[n][i] f[n][i],只要这个数大于等于0,我们就可以让我们的 a n s = i ans = i ans=i。最后一个大于等于0的 f [ n ] [ i ] f[n][i] f[n][i]所对应的 i i i就是我们的答案。

转移方程:
f [ i ] [ j ] = { f [ i − 1 ] [ j ] m a x ( f [ i − 1 ] [ j − 1 ] + a [ i ] , f [ i − 1 ] [ j ] ) f [ i − 1 ] [ j − 1 ] ≥ 0 f[i][j] = \begin{cases} f[i - 1][j]\\ max\bigg(f[i - 1][j - 1] + a[i], f[i -1][j]\bigg)&f[i- 1][j- 1]\geq 0 \end{cases} f[i][j]= f[i1][j]max(f[i1][j1]+a[i],f[i1][j])f[i1][j1]0
因为只有在当前数字的和大于等于0的时候,我们才能去选下一个。所以我们需要让 f [ i − 1 ] [ j − 1 ] f[i-1][j-1] f[i1][j1]大于0。

3、代码

#include<bits/stdc++.h>
#define endl '\n'
#define INF 0x3f3f3f3f
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const int N = 2010;
ll a[N], f[N][N];
void solve()
{
	int n;
	cin >> n;
	for(int i = 1; i <= n; i ++ )
		cin >> a[i];
	memset(f, 0xcf, sizeof f);
	f[0][0] = 0;
	for(int i = 1; i <= n; i ++ )
	{
		for(int j = 0; j <= i; j ++ )
		{
			f[i][j] = f[i - 1][j];
			if(j >= 1 && f[i - 1][j - 1]  >= 0)
			f[i][j] = max(f[i - 1][j - 1] + a[i], f[i][j]);
		}
	}

	int ans = 0;
	for(int i = 0; i <= n; i ++ )
	{
		if(f[n][i] >= 0)
			ans = i;
	}
	cout << ans << endl;
}

int main()
{
	ios::sync_with_stdio(0);
	cin.tie(0);
	cout.tie(0);

	solve();
}

二、Potions(Hard Version)

1、问题

在这里插入图片描述

2、分析(反悔贪心)

这道题和上一道题的唯一区别就是我们的数据范围变得很大,所以二维DP数组是存储不下的,即使我们逆序遍历从而优化掉一维的话,我们的时间复杂度也是平方级别的,依然过不了。

因此,我们就只能想别的方法了。

这里采用的也是贪心策略

我们从左到右开始枚举每一个数,在枚举的过程中我们会发现,正数一定是要选择的,所以遇到正数我们就加上即可。

这里的重点是负数的选择。

从左到右枚举每一个数,假设每一个数都选择,当当前的总和小于0的时候,我们就把从开始位置到当前位置之间的负数中最小的一个删掉。

为什么这样做呢?

假设枚举到第 i i i个的时候,总和 s u m sum sum从正数变成负数。再假设此时我们选择了 k k k个数(不算第 i i i个)。

那么很明确的是, s u m sum sum是由于第 i i i个数的加入才变成了负数, 说明第 i i i个数一定是负数。那么我们当然可以选择删除第 i i i个数,这样的话,我们就能保证 s u m sum sum依然是正数。

但不选第 i i i个数就是最优解吗?其实不一定的。

如果在 1 1 1 i i i之间存在一个小于第 i i i个数的最小的负数。如果我们删除了这个最小的负数,选择了第 i i i个数,我们将这两个数字记作 m i n min min p p p。那么此时的总和就是 s u m − m i n + p sum-min+p summin+p m i n min min小于 p p p所以 p − m i n p-min pmin是大于0的。

而此时我们选了几个数呢?选择第 i i i个数,我们此时总共选了 k + 1 k+1 k+1个数,删除最小的负数,即再减一,所以总共还是选择了 k k k个数。

其实很容易证明,当我们经过上述操作后,我们的 s u m sum sum是从 1 1 1 i i i中选择 k k k个数时,最大的数字和。式子 s u m + p − m i n v sum+p-minv sum+pminv就可以证明,因为 m i n v minv minv是最小的,所以这个式子是最大的。

也就是说,通过上述的操作,我们维护的都是选择 k k k个数时的最优解( s u m sum sum最大)。

通过刚才的 e a s y easy easy版本的讲解,我们也知道,选择相同个数的数字时,总和越大越好,总和越大说明我们后续的选择越多。

不妨看出,通过上面的操作,我们的 k k k是不受影响的, 即这样调整不会使得我们的答案变小。

如果感性认知的话,就是我们时刻保持最优解去看能不能喝下一瓶。

综上,我们的做法可以描述为,从左到右遍历,利用总和 s u m sum sum记录,只要 s u m sum sum小于0了,我们就删除遍历过的数中的最小负数。

在一堆数字中选出一个最值,我们可以使用优先队列。

我们的时间复杂度即 O ( n l o g n ) O(nlogn) O(nlogn)

而我们发现,这个贪心过程中我们出现了反悔的操作,即我们一开始喝了一瓶,但是后来发现喝的这一瓶不是最优解,那么我们就反悔了,这一瓶不喝了。这种贪心就被称为反悔贪心

3、代码

#include<bits/stdc++.h>
#define endl '\n'
#define INF 0x3f3f3f3f
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const int N = 2e5 + 10;
ll a[N], f[N];
void solve()
{
	int n;
	cin >> n;
	for(int i = 0; i < n; i ++ )
		cin >> a[i];
	priority_queue<int>q;
	ll ans = 0, sum = 0;
	for(int i = 0; i < n; i ++ )
	{
		sum += a[i];
		ans ++;
		if(a[i] < 0)
			q.push( - a[i]);

		if(sum < 0)
		{
			sum += q.top();
			q.pop();
			ans --;
		}
	}
	cout << ans << endl;
	
}

int main()
{
	ios::sync_with_stdio(0);
	cin.tie(0);
	cout.tie(0);

	solve();
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值