RSA算法实现密文加密(字符型密文,ASCII码转换,扩展欧几里得算法)

RSA非对称加密算法实现过程:

公私钥的生成,随机选定两个大素数p, q;

对于两个大素数,pgif.latex?%5Cneqq,计算公钥和私钥的公共模数 n = pq;

根据欧拉函数,求得φ(n) = (p-1)(q-1) ,选择一个小于 φ(n)的整数e;

对于正整数e, 使1 < e < φ(n) , 且e与φ(n)互质;

将p和q的记录销毁;

计算e关于φ(n)的模逆d, 满足degif.latex?%5Cequiv1 (mod φ(n) ), (‘gif.latex?%5Cequiv’表示同余的概念).

{n,e}就是公钥,{n,d}就是私钥。秘钥的位数由n的值决定,与n所占用的二进制位宽相等。

#include<iostream>
#include<cstring>
using namespace std;

//判断是否为质数 
bool isprime(int n){
	if(n==1||n==0) return false;
	for(int i=2;i*i<=n;i++)
		if(n%i==0) return false;
	return true;
} 

//求解x的y次方模n的结果 
int pow_mod(int x, int y, int n){
	int x0=x;
	for(int i=1;i<y;i++){
		x*=x0;
		//在每一步过程中取模,缩减数据大小,加快运算速度 
		//(a*b*...)%n=(a%n*b%n*...)%n
		x%=n;
	}
	return x;
}

//求a,b最大公因数 
int gcd(int a, int b){
	//a<b则交换 
	if(a<b){
		a=a+b;
		b=a-b;
		a=a-b;
	}
	//欧几里得 
	while(a%b){
		int c=a;
		a=b;
		b=c%b;
	}
	return b;
}

int main()
{
	//公钥(n,e),私钥(n,d) 
	int p, q, n, t, e, d;
	//两位大质数p,q 
	cout<<"Please input two primes:"; 
	cin>>p>>q;
	while(!isprime(p)||!isprime(q)){
		cout<<"Please retype!"<<endl;
		cin>>p>>q;
	}
	n=p*q;
	t=(p-1)*(q-1);
	
	//加密密钥e 
	e=2;//从2开始挑选合适的密钥  
	while(e++)
		if(gcd(e, t)==1&&e<t) break;//e,t互质,且e<t 
		
	//解密密钥d 
	for(int i=1;;i++){
		//已知e和t,求(d*e)%t=1中的d,采用试商  
		//当t与商i相乘再+1,模上e之后的结果刚好为0,则说明找到了整数d 
		if((t*i+1)%e==0){
			d=(t*i+1)/e; 
			break;
		}
	}
	
//至此,准备工作完成 
	
	char plain[50];//字符型明文 
	int plainnum[50], ciphernum[50];//利用ASCII码转换为数字型 
	cout<<"Please input the plaintext:"; 
	getchar();//消除输入完p,q后的回车 
	gets(plain);

	//RSA加密:C=(P^E)modN 
	for(int i=0;i<strlen(plain);i++){
		plainnum[i]=(int)plain[i];//转换 
		ciphernum[i]=pow_mod(plainnum[i],e,n);
	}

	cout<<"The ciphertext is:";
	for(int i=0;i<strlen(plain);i++)
	//此处输出的密文为根据ASCII码转换的数字 
		cout<<ciphernum[i]<<" "; 
	cout<<endl;

	//RSA解密:P=(C^D)modN 
	cout<<"The text afer decryption is:";
	for(int i=0;i<strlen(plain);i++)
		cout<<(char)pow_mod(ciphernum[i],d,n);//转换 
		
	return 0;
} 

其中line61~line69,求解(d*e)%t=1中,e的模乘法逆元d时,使用了试商.

然而,数据量越大,所尝试的商越多,耗时越多.

为了时间能得到优化,此处可使用扩展欧几里得算法:

扩展欧几里得算法过程简述:

求解ax+by=gcd(a,b)中的x和y

①准备工作:

r[-1]=a, r[0]=b;

x[-1]=1, y[-1]=0;

x[0]=0, y[0]=1; 

②代入公式:

r[i]=r[i-2]%r[i-1]; q[i]=r[i-2]/r[i-1];

x[i]=x[i-2]-x[i-1]*q[i]; y[i]=y[i-2]-y[i-1]*q[i];

③终止条件:

当r[i]=0时, 停止计算, 此时:

gcd(a, b)=r[i-1]; x=x[i-1]; y=y[i-1];

将扩展欧几里得算法与RSA中求解密钥d过程建立联系 :

推导:

a为被除数, b为除数.

已知扩展欧几里得算法基本式:ax+by=gcd(a,b).

若令gcd(a,b)=1, 即ax+by=1, 再利用模运算基本性质, 等式两边同时模a, 则有:

[(ax%a)+(by%a)]%a=1%a;

0+(by%a)=1;

by%a=1;

此处a和b相当于RSA中的t和e, 而我们所求的密钥d, 就是这里的y, 可以通过扩展欧几里得算法求出.

 对line61~line69进行优化:

因为数组下标只能为自然数,所以代码中起始下标从0开始,而非描述中的起始下标-1,但本质上一致,仅仅是下标序号不同。

(尽管代码形式变复杂, 然而实际运算效率是提高的)

//解密密钥d
	//已知e和t,求(d*e)%t=1中的d,采用扩展欧几里得算法 
	int r[20], x[20], y[20], Q[20], i=1;
	r[0]=t;//t作为被除数 
	r[1]=e;//e作为除数 
	x[0]=1, y[0]=0;
	x[1]=0, y[1]=1;
	while(i++){
		r[i]=r[i-2]%r[i-1];
		if(!r[i]) break;//r[i]为0, 达成终止条件
		Q[i]=r[i-2]/r[i-1];
		x[i]=x[i-2]-x[i-1]*Q[i];
		y[i]=y[i-2]-y[i-1]*Q[i];
	}
    //由于求出的x和y符号必定相反,结果若为负则需要转换为正
    //依然利用模运算性质:
    //例如:若a为负数(|a|<n), a%n=(a+n)%n, 通过加n得到正数, 不影响结果
	if(y[i-1]<0) y[i-1]+=t;
	d=y[i-1]; 

由于不确定扩展欧几里得算法需要进行多少层, 数组大小不确定, 会造成空间浪费.

可以进一步优化:

//解密密钥d
	int r0, r1, r2, x0, x1, x2, y0, y1, y2, Q;
	r0=t;//作为被除数 
	r1=e;//作为除数
	x0=1, y0=0;
	x1=0, y1=1;
	while(1){
		r2=r0%r1;//r[i]=r[i-2]%r[i-1]
		if(!r2) break;
		Q=r0/r1;//q[i]=r[i-2]/r[i-1]
		x2=x0-x1*Q;//x[i]=x[i-2]-x[i-1]*q[i]
		y2=y0-y1*Q;//y[i]=y[i-2]-y[i-1]*q[i]
		
        //准备新一轮运算
		r0=r1, r1=r2;
		x0=x1, x1=x2;
		y0=y1, y1=y2;
	}
	if(y2<0) y2+=t;
	d=y2;

由于循环和递归是相通的, 因此如果再进一步转换为递归, 可简化代码形式.

 

 

 

  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值