文章目录集合跳转
一、极限
1.1 常见左右极限问题
定义 左极限:若对任意给定的
ε
>
0
\varepsilon > 0
ε>0,总存在
δ
>
0
\delta > 0
δ>0,使得当
x
0
−
δ
<
x
<
x
0
x_0 - \delta < x < x_0
x0−δ<x<x0 时,恒有
∣
f
(
x
)
−
A
∣
<
ε
|f(x) - A| < \varepsilon
∣f(x)−A∣<ε,则称
A
A
A 为
f
(
x
)
f(x)
f(x) 在
x
→
x
0
−
x \to x_0^-
x→x0− 时的左极限,记为
lim
x
→
x
0
−
f
(
x
)
=
A
,
或
f
(
x
0
−
)
=
A
.
\lim\limits_{x \to x_0^-} f(x) = A, \quad \text{或} \quad f(x_0^-) = A.
x→x0−limf(x)=A,或f(x0−)=A.
右极限 若对任意给定的
ε
>
0
\varepsilon > 0
ε>0,总存在
δ
>
0
\delta > 0
δ>0,使得当
x
0
<
x
<
x
0
+
δ
x_0 < x < x_0 + \delta
x0<x<x0+δ 时,恒有
∣
f
(
x
)
−
A
∣
<
ε
|f(x) - A| < \varepsilon
∣f(x)−A∣<ε,则称
A
A
A 为
f
(
x
)
f(x)
f(x) 在
x
→
x
0
+
x \to x_0^+
x→x0+ 时的右极限,记为
lim
x
→
x
0
+
f
(
x
)
=
A
,
或
f
(
x
0
+
)
=
A
.
\lim\limits_{x \to x_0^+} f(x) = A, \quad \text{或} \quad f(x_0^+) = A.
x→x0+limf(x)=A,或f(x0+)=A.
定理 极限
lim
x
→
x
0
f
(
x
)
\lim\limits_{x \to x_0} f(x)
x→x0limf(x) 存在的充要条件是:
左极限
lim
x
→
x
0
−
f
(
x
)
\lim\limits_{x \to x_0^-} f(x)
x→x0−limf(x) 与右极限
lim
x
→
x
0
+
f
(
x
)
\lim\limits_{x \to x_0^+} f(x)
x→x0+limf(x) 存在且相等。
注:需分左右极限的情形 以下三类问题需分别计算左、右极限:
- 分段函数在分界点处的极限(如 lim x → 0 ∣ x ∣ x \lim\limits_{x \to 0} \frac{|x|}{x} x→0limx∣x∣);
-
e
∞
e^\infty
e∞ 型极限:
- lim x → 0 − e 1 / x = 0 \lim\limits_{x \to 0^-} e^{1/x} = 0 x→0−lime1/x=0, lim x → 0 + e 1 / x = + ∞ \lim\limits_{x \to 0^+} e^{1/x} = +\infty x→0+lime1/x=+∞;
- lim x → − ∞ e x = 0 \lim\limits_{x \to -\infty} e^x = 0 x→−∞limex=0, lim x → + ∞ e x = + ∞ \lim\limits_{x \to +\infty} e^x = +\infty x→+∞limex=+∞;
-
arctan
∞
\arctan \infty
arctan∞ 型极限:
- lim x → 0 − arctan 1 x = − π 2 \lim\limits_{x \to 0^-} \arctan \frac{1}{x} = -\frac{\pi}{2} x→0−limarctanx1=−2π, lim x → 0 + arctan 1 x = π 2 \lim\limits_{x \to 0^+} \arctan \frac{1}{x} = \frac{\pi}{2} x→0+limarctanx1=2π;
- lim x → − ∞ arctan x = − π 2 \lim\limits_{x \to -\infty} \arctan x = -\frac{\pi}{2} x→−∞limarctanx=−2π, lim x → + ∞ arctan x = π 2 \lim\limits_{x \to +\infty} \arctan x = \frac{\pi}{2} x→+∞limarctanx=2π。
例题
(1992年,数一/二/三)当
x
→
1
x \to 1
x→1 时,函数
x
2
−
1
x
−
1
e
1
/
(
x
−
1
)
\frac{x^2-1}{x-1} e^{1/(x-1)}
x−1x2−1e1/(x−1) 的极限
(A) 等于 2 (B) 等于 0 (C ) 为
∞
\infty
∞ (D) 不存在但不为
∞
\infty
∞
解析
1. 左极限:
lim
x
→
1
−
x
2
−
1
x
−
1
e
1
/
(
x
−
1
)
=
lim
x
→
1
−
(
x
+
1
)
e
1
/
(
x
−
1
)
=
2
⋅
0
=
0.
\lim\limits_{x \to 1^-} \frac{x^2-1}{x-1} e^{1/(x-1)} = \lim\limits_{x \to 1^-} (x+1) e^{1/(x-1)} = 2 \cdot 0 = 0.
x→1−limx−1x2−1e1/(x−1)=x→1−lim(x+1)e1/(x−1)=2⋅0=0.
2. 右极限:
lim
x
→
1
+
x
2
−
1
x
−
1
e
1
/
(
x
−
1
)
=
lim
x
→
1
+
(
x
+
1
)
e
1
/
(
x
−
1
)
=
2
⋅
+
∞
=
+
∞
.
\lim\limits_{x \to 1^+} \frac{x^2-1}{x-1} e^{1/(x-1)} = \lim\limits_{x \to 1^+} (x+1) e^{1/(x-1)} = 2 \cdot +\infty = +\infty.
x→1+limx−1x2−1e1/(x−1)=x→1+lim(x+1)e1/(x−1)=2⋅+∞=+∞.
结论:左右极限不相等,且一侧为无穷,故极限不存在且不为
∞
\infty
∞。正确答案为 D。
1.2 无穷小量
1.2.1 无穷小量的概念
若函数 f ( x ) f(x) f(x) 当 x → x 0 x \to x_0 x→x0(或 x → ∞ x \to \infty x→∞)时的极限为零,则称 f ( x ) f(x) f(x) 为 x → x 0 x \to x_0 x→x0(或 x → ∞ x \to \infty x→∞)的无穷小量。
1.2.2 无穷小的比较
设 lim α ( x ) = 0 \lim \alpha(x) = 0 limα(x)=0, lim β ( x ) = 0 \lim \beta(x) = 0 limβ(x)=0,且 β ( x ) ≠ 0 \beta(x) \neq 0 β(x)=0。
- 高阶:若 lim α ( x ) β ( x ) = 0 \lim \frac{\alpha(x)}{\beta(x)} = 0 limβ(x)α(x)=0,记为 α ( x ) = o ( β ( x ) ) \alpha(x) = o(\beta(x)) α(x)=o(β(x))。
- 低阶:若 lim α ( x ) β ( x ) = ∞ \lim \frac{\alpha(x)}{\beta(x)} = \infty limβ(x)α(x)=∞。
- 同阶:若 lim α ( x ) β ( x ) = C ≠ 0 \lim \frac{\alpha(x)}{\beta(x)} = C \neq 0 limβ(x)α(x)=C=0。
- 等价:若 lim α ( x ) β ( x ) = 1 \lim \frac{\alpha(x)}{\beta(x)} = 1 limβ(x)α(x)=1,记为 α ( x ) ∼ β ( x ) \alpha(x) \sim \beta(x) α(x)∼β(x)。
- 无穷小的阶:若 lim α ( x ) [ β ( x ) ] k = C ≠ 0 \lim \frac{\alpha(x)}{[\beta(x)]^k} = C \neq 0 lim[β(x)]kα(x)=C=0,则称 α ( x ) \alpha(x) α(x) 是 β ( x ) \beta(x) β(x) 的 k k k 阶无穷小。
(2013, 数二)设
cos
x
−
1
=
x
sin
α
(
x
)
\cos x - 1 = x \sin \alpha(x)
cosx−1=xsinα(x),其中
∣
α
(
x
)
∣
<
π
2
|\alpha(x)| < \frac{\pi}{2}
∣α(x)∣<2π,则当
x
→
0
x \to 0
x→0 时,
α
(
x
)
\alpha(x)
α(x) 是
(A) 比
x
x
x 高阶的无穷小量。
(B) 比
x
x
x 低阶的无穷小量。
(C ) 与
x
x
x 同阶但不等价的无穷小量。
(D) 与
x
x
x 等价的无穷小量。
解析:
1. 已知当
x
→
0
x \to 0
x→0 时,
cos
x
−
1
∼
−
1
2
x
2
\cos x - 1 \sim -\frac{1}{2}x^2
cosx−1∼−21x2,因此:
−
1
2
x
2
=
x
sin
α
(
x
)
⟹
sin
α
(
x
)
=
−
1
2
x
.
-\frac{1}{2}x^2 = x \sin \alpha(x) \implies \sin \alpha(x) = -\frac{1}{2}x.
−21x2=xsinα(x)⟹sinα(x)=−21x.
2. 由
∣
α
(
x
)
∣
<
π
2
|\alpha(x)| < \frac{\pi}{2}
∣α(x)∣<2π 及
sin
α
(
x
)
∼
α
(
x
)
\sin \alpha(x) \sim \alpha(x)
sinα(x)∼α(x)(当
x
→
0
x \to 0
x→0),得:
α
(
x
)
∼
−
1
2
x
.
\alpha(x) \sim -\frac{1}{2}x.
α(x)∼−21x.
3. 故
α
(
x
)
\alpha(x)
α(x) 与
x
x
x 同阶但不等价(系数为
−
1
2
≠
1
-\frac{1}{2} \neq 1
−21=1)。
选择C
1.3 无穷大量
1.3.1 无穷大量的性质
- 两个无穷大量的积仍为无穷大量。
- 无穷大量与有界变量之和仍为无穷大量。
1.3.2 无穷大量与无界变量的关系
以数列为例说明两者的关系:
- 无穷大量的定义:
对任意 M > 0 M > 0 M>0,存在 N > 0 N > 0 N>0,当 n > N n > N n>N 时,恒有 ∣ x n ∣ > M |x_n| > M ∣xn∣>M。 - 无界变量的定义:
对任意 M > 0 M > 0 M>0,存在某个 N N N,使得 ∣ x N ∣ > M |x_N| > M ∣xN∣>M。
结论:
- 无穷大量必为无界变量。
- 无界变量不一定是无穷大量。
证明数列
x
n
=
{
n
,
n
为奇数
,
0
,
n
为偶数
x_n = \begin{cases} n, & n \text{为奇数}, \\\\ 0, & n \text{为偶数}\end{cases}
xn=⎩
⎨
⎧n,0,n为奇数,n为偶数
是无界变量但不是无穷大量。
证明:
1. 无界性:
对任意
M
>
0
M > 0
M>0,取奇数
n
>
M
n > M
n>M,则
x
n
=
n
>
M
x_n = n > M
xn=n>M,故数列无界。
2. 非无穷大量:
对任意
N
>
0
N > 0
N>0,总存在偶数
n
>
N
n > N
n>N(如
n
=
N
+
1
n = N+1
n=N+1 或
N
+
2
N+2
N+2),使得
x
n
=
0
x_n = 0
xn=0,不满足
∣
x
n
∣
>
M
|x_n| > M
∣xn∣>M 对所有
n
>
N
n > N
n>N 成立。因此数列不是无穷大量。
1.4 常用的求极限方法(8种)
1.4.1 利用基本极限求极限
(1) 常用的基本极限
- lim x → 0 sin x x = 1 \lim\limits_{x \to 0} \frac{\sin x}{x} = 1 x→0limxsinx=1
- lim x → 0 ( 1 + x ) 1 x = e \lim\limits_{x \to 0} (1 + x)^{\frac{1}{x}} = e x→0lim(1+x)x1=e
- lim x → ∞ ( 1 + 1 x ) x = e \lim\limits_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e x→∞lim(1+x1)x=e
- lim x → 0 a x − 1 x = ln a \lim\limits_{x \to 0} \frac{a^x - 1}{x} = \ln a x→0limxax−1=lna
- lim n → ∞ n n = 1 \lim\limits_{n \to \infty} \sqrt[n]{n} = 1 n→∞limnn=1
- lim n → ∞ a n = 1 ( a > 0 ) \lim\limits_{n \to \infty} \sqrt[n]{a} = 1 \quad (a > 0) n→∞limna=1(a>0)
有理分式极限:
lim
x
→
∞
a
n
x
n
+
⋯
+
a
0
b
m
x
m
+
⋯
+
b
0
=
{
a
n
b
m
,
n
=
m
,
0
,
n
<
m
,
∞
,
n
>
m
.
\lim_{x \to \infty} \frac{a_n x^n + \cdots + a_0}{b_m x^m + \cdots + b_0} = \begin{cases} \frac{a_n}{b_m}, & n = m, \\\\ 0, & n < m, \\\\ \infty, & n > m. \end{cases}
x→∞limbmxm+⋯+b0anxn+⋯+a0=⎩
⎨
⎧bman,0,∞,n=m,n<m,n>m.
幂函数极限:
lim
n
→
∞
x
n
=
{
0
,
∣
x
∣
<
1
,
∞
,
∣
x
∣
>
1
,
1
,
x
=
1
,
不存在
,
x
=
−
1.
\lim_{n \to \infty} x^n = \begin{cases} 0, & |x| < 1, \\\\ \infty, & |x| > 1, \\\\ 1, & x = 1, \\\\ \text{不存在}, & x = -1. \end{cases}
n→∞limxn=⎩
⎨
⎧0,∞,1,不存在,∣x∣<1,∣x∣>1,x=1,x=−1.
指数函数极限:
lim
n
→
∞
e
n
x
=
{
0
,
x
<
0
,
+
∞
,
x
>
0
,
1
,
x
=
0.
\lim_{n \to \infty} e^{nx} = \begin{cases} 0, & x < 0, \\\\ +\infty, & x > 0, \\\\ 1, & x = 0. \end{cases}
n→∞limenx=⎩
⎨
⎧0,+∞,1,x<0,x>0,x=0.
(2) “ 1 ∞ 1^\infty 1∞”型极限常用结论
若
lim
α
(
x
)
=
0
\lim \alpha(x) = 0
limα(x)=0,
lim
β
(
x
)
=
∞
\lim \beta(x) = \infty
limβ(x)=∞,且
lim
α
(
x
)
β
(
x
)
=
A
\lim \alpha(x) \beta(x) = A
limα(x)β(x)=A,则
lim
[
1
+
α
(
x
)
]
β
(
x
)
=
e
A
.
\lim [1 + \alpha(x)]^{\beta(x)} = e^A.
lim[1+α(x)]β(x)=eA.
解题步骤:
1. 写标准形式:原式
=
lim
[
1
+
α
(
x
)
]
β
(
x
)
= \lim [1 + \alpha(x)]^{\beta(x)}
=lim[1+α(x)]β(x)。
2. 求极限:
lim
α
(
x
)
β
(
x
)
=
A
\lim \alpha(x) \beta(x) = A
limα(x)β(x)=A。
3. 写结果:原式
=
e
A
= e^A
=eA。
1.4.2 利用等价无穷小代换求极限
(1) 代换原则
-
乘除关系可以换:
若 α ∼ α 1 \alpha \sim \alpha_1 α∼α1, β ∼ β 1 \beta \sim \beta_1 β∼β1,则
lim α β = lim α 1 β = lim α β 1 = lim α 1 β 1 . \lim \frac{\alpha}{\beta} = \lim \frac{\alpha_1}{\beta} = \lim \frac{\alpha}{\beta_1} = \lim \frac{\alpha_1}{\beta_1}. limβα=limβα1=limβ1α=limβ1α1. -
加减关系在一定条件下可以换:
- 若 α ∼ α 1 \alpha \sim \alpha_1 α∼α1, β ∼ β 1 \beta \sim \beta_1 β∼β1,且 lim α 1 β 1 = A ≠ 1 \lim \frac{\alpha_1}{\beta_1} = A \neq 1 limβ1α1=A=1,则 α − β ∼ α 1 − β 1 \alpha - \beta \sim \alpha_1 - \beta_1 α−β∼α1−β1。
- 若 α ∼ α 1 \alpha \sim \alpha_1 α∼α1, β ∼ β 1 \beta \sim \beta_1 β∼β1,且 lim α 1 β 1 = A ≠ − 1 \lim \frac{\alpha_1}{\beta_1} = A \neq -1 limβ1α1=A=−1,则 α + β ∼ α 1 + β 1 \alpha + \beta \sim \alpha_1 + \beta_1 α+β∼α1+β1。
- 等价无穷小代换需验证条件(如 α ( x ) β ( x ) → 0 \alpha(x)\beta(x) \to 0 α(x)β(x)→0)。
- 乘除运算可直接代换,加减运算需谨慎(需满足系数不等条件)。
(2) 常用的等价无穷小(当 x → 0 x \to 0 x→0 时)
-
基本等价:
x ∼ sin x ∼ tan x ∼ arcsin x ∼ arctan x ∼ ln ( 1 + x ) ∼ e x − 1 , x \sim \sin x \sim \tan x \sim \arcsin x \sim \arctan x \sim \ln(1+x) \sim e^x - 1, x∼sinx∼tanx∼arcsinx∼arctanx∼ln(1+x)∼ex−1,
( 1 + x ) α − 1 ∼ α x ( α ≠ 0 ) , 1 − cos x ∼ 1 2 x 2 , a x − 1 ∼ x ln a . (1+x)^\alpha - 1 \sim \alpha x \ (\alpha \neq 0), \quad 1 - \cos x \sim \frac{1}{2}x^2, \quad a^x - 1 \sim x \ln a. (1+x)α−1∼αx (α=0),1−cosx∼21x2,ax−1∼xlna. -
高阶等价:
x − sin x ∼ 1 6 x 3 , tan x − x ∼ 1 3 x 3 , x − ln ( 1 + x ) ∼ 1 2 x 2 , x - \sin x \sim \frac{1}{6}x^3, \quad \tan x - x \sim \frac{1}{3}x^3, \quad x - \ln(1+x) \sim \frac{1}{2}x^2, x−sinx∼61x3,tanx−x∼31x3,x−ln(1+x)∼21x2,
arcsin x − x ∼ 1 6 x 3 , x − arctan x ∼ 1 3 x 3 . \arcsin x - x \sim \frac{1}{6}x^3, \quad x - \arctan x \sim \frac{1}{3}x^3. arcsinx−x∼61x3,x−arctanx∼31x3.
(2016,数三)已知函数
f
(
x
)
f(x)
f(x) 满足
lim
x
→
0
1
+
f
(
x
)
sin
2
x
−
1
e
3
x
−
1
=
2
,
\lim\limits_{x \to 0} \frac{\sqrt{1 + f(x)} \sin 2x - 1}{e^{3x} - 1} = 2,
x→0lime3x−11+f(x)sin2x−1=2,
则求
lim
x
→
0
f
(
x
)
\lim\limits_{x \to 0} f(x)
x→0limf(x)。
解析:
1. 由
lim
x
→
0
(
e
3
x
−
1
)
=
0
\lim\limits_{x \to 0} (e^{3x} - 1) = 0
x→0lim(e3x−1)=0 及极限存在,得分子极限必为 0:
lim
x
→
0
(
1
+
f
(
x
)
sin
2
x
−
1
)
=
0.
\lim\limits_{x \to 0} \left(\sqrt{1 + f(x)} \sin 2x - 1\right) = 0.
x→0lim(1+f(x)sin2x−1)=0.
2. 利用等价无穷小代换:
- e 3 x − 1 ∼ 3 x e^{3x} - 1 \sim 3x e3x−1∼3x,
-
1
+
f
(
x
)
sin
2
x
−
1
∼
1
2
f
(
x
)
sin
2
x
\sqrt{1 + f(x)} \sin 2x - 1 \sim \frac{1}{2} f(x) \sin 2x
1+f(x)sin2x−1∼21f(x)sin2x(当
f
(
x
)
→
0
f(x) \to 0
f(x)→0 时)。
- 代入极限式:
lim x → 0 1 2 f ( x ) sin 2 x 3 x = 2 ⟹ lim x → 0 f ( x ) ⋅ 2 x 6 x = 2 ⟹ lim x → 0 f ( x ) = 6. \lim\limits_{x \to 0} \frac{\frac{1}{2} f(x) \sin 2x}{3x} = 2 \implies \lim\limits_{x \to 0} \frac{f(x) \cdot 2x}{6x} = 2 \implies \lim\limits_{x \to 0} f(x) = 6. x→0lim3x21f(x)sin2x=2⟹x→0lim6xf(x)⋅2x=2⟹x→0limf(x)=6.
结论: lim x → 0 f ( x ) = 6 \lim\limits_{x \to 0} f(x) = 6 x→0limf(x)=6。
极限计算示例
计算极限:
lim
x
→
0
x
(
cos
x
−
1
)
3
\lim\limits_{x \to 0} \frac{x (\cos x - 1)}{3}
x→0lim3x(cosx−1)
解题过程:
-
利用等价无穷小代换(当 x → 0 x \to 0 x→0 时):
- cos x − 1 ∼ − 1 2 x 2 \cos x - 1 \sim -\frac{1}{2}x^2 cosx−1∼−21x2
-
代入化简:
lim x → 0 x ( cos x − 1 ) 3 = lim x → 0 − 1 2 x 3 3 = lim x → 0 ( − x 3 6 ) = 0. \lim\limits_{x \to 0} \frac{x (\cos x - 1)}{3} = \lim\limits_{x \to 0} \frac{-\frac{1}{2}x^3}{3} = \lim\limits_{x \to 0} \left(-\frac{x^3}{6}\right) = 0. x→0lim3x(cosx−1)=x→0lim3−21x3=x→0lim(−6x3)=0.
注:上述步骤有误,正确过程如下: -
重新计算:
lim x → 0 x ( cos x − 1 ) 3 = 1 3 lim x → 0 x ( cos x − 1 ) = 1 3 ⋅ 0 = 0. \lim\limits_{x \to 0} \frac{x (\cos x - 1)}{3} = \frac{1}{3} \lim\limits_{x \to 0} x (\cos x - 1) = \frac{1}{3} \cdot 0 = 0. x→0lim3x(cosx−1)=31x→0limx(cosx−1)=31⋅0=0.
推广结论
当
x
→
0
x \to 0
x→0 时,
(
1
+
x
)
a
−
1
∼
a
x
(1 + x)^a - 1 \sim a x
(1+x)a−1∼ax。
进一步推广:若
α
(
x
)
→
0
\alpha(x) \to 0
α(x)→0 且
α
(
x
)
β
(
x
)
→
0
\alpha(x)\beta(x) \to 0
α(x)β(x)→0,则
[
1
+
α
(
x
)
]
β
(
x
)
−
1
∼
α
(
x
)
β
(
x
)
.
[1 + \alpha(x)]^{\beta(x)} - 1 \sim \alpha(x)\beta(x).
[1+α(x)]β(x)−1∼α(x)β(x).
应用示例:
(
1
+
cos
x
−
1
3
)
x
−
1
∼
x
(
cos
x
−
1
)
3
.
\left(1 + \frac{\cos x - 1}{3}\right)^x - 1 \sim \frac{x (\cos x - 1)}{3}.
(1+3cosx−1)x−1∼3x(cosx−1).
验证:
由
cos
x
−
1
∼
−
1
2
x
2
\cos x - 1 \sim -\frac{1}{2}x^2
cosx−1∼−21x2,得
x
(
cos
x
−
1
)
3
∼
−
x
3
6
→
0
(
x
→
0
)
.
\frac{x (\cos x - 1)}{3} \sim -\frac{x^3}{6} \to 0 \quad (x \to 0).
3x(cosx−1)∼−6x3→0(x→0).
1.4.3 利用有理运算法则求极限
有理运算法则
设
lim
f
(
x
)
=
A
\lim f(x) = A
limf(x)=A,
lim
g
(
x
)
=
B
\lim g(x) = B
limg(x)=B,则:
- lim [ f ( x ) ± g ( x ) ] = A ± B \lim [f(x) \pm g(x)] = A \pm B lim[f(x)±g(x)]=A±B
- lim [ f ( x ) g ( x ) ] = A B \lim [f(x)g(x)] = AB lim[f(x)g(x)]=AB
- lim [ f ( x ) g ( x ) ] = A B ( B ≠ 0 ) \lim \left[ \frac{f(x)}{g(x)} \right] = \frac{A}{B} \quad (B \neq 0) lim[g(x)f(x)]=BA(B=0)
【注】
- (1) 存在 ± 不存在 = 不存在
- (2) 不存在 ± 不存在 = 不一定
- (3) 存在 ×(÷) 不存在 = 不一定
- (4) 不存在 ×(÷) 不存在 = 不一定
常用结论
- 若 lim f ( x ) = A ≠ 0 \lim f(x) = A \neq 0 limf(x)=A=0,则 lim f ( x ) g ( x ) = A lim g ( x ) \lim f(x)g(x) = A \lim g(x) limf(x)g(x)=Alimg(x)。(极限非零因子可先计算)
- 若 lim f ( x ) g ( x ) \lim \frac{f(x)}{g(x)} limg(x)f(x) 存在且 lim g ( x ) = 0 \lim g(x) = 0 limg(x)=0,则 lim f ( x ) = 0 \lim f(x) = 0 limf(x)=0。
- 若 lim f ( x ) g ( x ) = A ≠ 0 \lim \frac{f(x)}{g(x)} = A \neq 0 limg(x)f(x)=A=0 且 lim f ( x ) = 0 \lim f(x) = 0 limf(x)=0,则 lim g ( x ) = 0 \lim g(x) = 0 limg(x)=0。
(2010,数三) 若
lim
x
→
0
[
1
x
−
(
1
x
−
a
)
e
x
]
=
1
\lim\limits_{x \to 0} \left[ \frac{1}{x} - \left( \frac{1}{x} - a \right) e^x \right] = 1
x→0lim[x1−(x1−a)ex]=1,则
a
a
a 等于 ( )
(A) 0 (B) 1 (C ) 2 (D) 3
解析:
-
化简极限式:
lim x → 0 [ 1 − e x x + a e x ] = 1. \lim\limits_{x \to 0} \left[ \frac{1 - e^x}{x} + a e^x \right] = 1. x→0lim[x1−ex+aex]=1. -
计算各部分极限:
- lim x → 0 1 − e x x = − 1 \lim\limits_{x \to 0} \frac{1 - e^x}{x} = -1 x→0limx1−ex=−1(等价代换 e x − 1 ∼ x e^x - 1 \sim x ex−1∼x),
- lim x → 0 a e x = a \lim\limits_{x \to 0} a e^x = a x→0limaex=a。
-
由极限运算法则得: − 1 + a = 1 ⟹ a = 2 -1 + a = 1 \implies a = 2 −1+a=1⟹a=2。
答案:C
总结
- 有理运算法则要求各部分极限存在,且分母极限非零。
- 处理复杂极限时,可先拆分或化简,再逐项求极限。
1.4.4 利用洛必达法则求极限
洛必达法则 若满足以下条件:
- lim x → x 0 f ( x ) = lim x → x 0 g ( x ) = 0 \lim\limits_{x \to x_0} f(x) = \lim\limits_{x \to x_0} g(x) = 0 x→x0limf(x)=x→x0limg(x)=0 或 ∞ \infty ∞;
- f ( x ) f(x) f(x) 和 g ( x ) g(x) g(x) 在 x 0 x_0 x0 的去心邻域内可导,且 g ′ ( x ) ≠ 0 g'(x) \neq 0 g′(x)=0;
- lim x → x 0 f ′ ( x ) g ′ ( x ) \lim\limits_{x \to x_0} \frac{f'(x)}{g'(x)} x→x0limg′(x)f′(x) 存在(或为 ∞ \infty ∞),
则:
lim
x
→
x
0
f
(
x
)
g
(
x
)
=
lim
x
→
x
0
f
′
(
x
)
g
′
(
x
)
.
\lim\limits_{x \to x_0} \frac{f(x)}{g(x)} = \lim\limits_{x \to x_0} \frac{f'(x)}{g'(x)}.
x→x0limg(x)f(x)=x→x0limg′(x)f′(x).
【注】
-
适用类型:
洛必达法则适用于七种未定式极限:- 直接应用: 0 0 \frac{0}{0} 00、 ∞ ∞ \frac{\infty}{\infty} ∞∞;
- 需转化后应用:
- 0 ⋅ ∞ 0 \cdot \infty 0⋅∞(化为 0 1 / ∞ \frac{0}{1/\infty} 1/∞0 或 ∞ 1 / 0 \frac{\infty}{1/0} 1/0∞),
- ∞ − ∞ \infty - \infty ∞−∞(通分或提因式),
- 1 ∞ 1^\infty 1∞、 ∞ 0 \infty^0 ∞0、 0 0 0^0 00(取对数化为 0 0 \frac{0}{0} 00 或 ∞ ∞ \frac{\infty}{\infty} ∞∞)。
-
注意事项:
- 使用前需验证条件(如是否为 0 0 \frac{0}{0} 00 或 ∞ ∞ \frac{\infty}{\infty} ∞∞ 型);
- 若应用后仍为未定式,可重复使用;
- 极限非零的因子可单独计算,简化运算;
- 结合等价无穷小代换或恒等变形(如 ln ( 1 + x ) ∼ x \ln(1+x) \sim x ln(1+x)∼x)可大幅简化过程。
示例说明
对于未定式
0
0
\frac{0}{0}
00 或
∞
∞
\frac{\infty}{\infty}
∞∞:
-
直接应用:
lim x → 0 sin x x → 洛必达 lim x → 0 cos x 1 = 1. \lim\limits_{x \to 0} \frac{\sin x}{x} \xrightarrow{\text{洛必达}} \lim\limits_{x \to 0} \frac{\cos x}{1} = 1. x→0limxsinx洛必达x→0lim1cosx=1. -
需转化类型:
- 1 ∞ 1^\infty 1∞ 型: lim x → ∞ ( 1 + 1 x ) x → 取对数 e lim x → ∞ x ln ( 1 + 1 / x ) = e 1 = e \lim\limits_{x \to \infty} \left(1 + \frac{1}{x}\right)^x \xrightarrow{\text{取对数}} e^{\lim\limits_{x \to \infty} x \ln(1+1/x)} = e^1 = e x→∞lim(1+x1)x取对数ex→∞limxln(1+1/x)=e1=e。
总结
- 洛必达法则是解决未定式极限的有力工具,但需严格验证条件。
- 灵活结合其他方法(如等价代换、因子分离)可提高计算效率。
1.4.5 利用泰勒公式求极限
定理(带皮亚诺余项的泰勒公式)
设
f
(
x
)
f(x)
f(x) 在
x
=
x
0
x = x_0
x=x0 处
n
n
n 阶可导,则
f
(
x
)
=
f
(
x
0
)
+
f
′
(
x
0
)
(
x
−
x
0
)
+
f
′
′
(
x
0
)
2
!
(
x
−
x
0
)
2
+
⋯
+
f
(
n
)
(
x
0
)
n
!
(
x
−
x
0
)
n
+
o
[
(
x
−
x
0
)
n
]
.
f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \cdots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + o[(x - x_0)^n].
f(x)=f(x0)+f′(x0)(x−x0)+2!f′′(x0)(x−x0)2+⋯+n!f(n)(x0)(x−x0)n+o[(x−x0)n].
特别地,当
x
0
=
0
x_0 = 0
x0=0 时(麦克劳林公式):
f
(
x
)
=
f
(
0
)
+
f
′
(
0
)
x
+
f
′
′
(
0
)
2
!
x
2
+
⋯
+
f
(
n
)
(
0
)
n
!
x
n
+
o
(
x
n
)
.
f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(n)}(0)}{n!}x^n + o(x^n).
f(x)=f(0)+f′(0)x+2!f′′(0)x2+⋯+n!f(n)(0)xn+o(xn).
常用泰勒展开( x → 0 x \to 0 x→0 时)
- 指数函数:
e x = 1 + x + x 2 2 ! + ⋯ + x n n ! + o ( x n ) . e^x = 1 + x + \frac{x^2}{2!} + \cdots + \frac{x^n}{n!} + o(x^n). ex=1+x+2!x2+⋯+n!xn+o(xn). - 三角函数:
sin x = x − x 3 3 ! + ⋯ + ( − 1 ) n − 1 x 2 n − 1 ( 2 n − 1 ) ! + o ( x 2 n ) , \sin x = x - \frac{x^3}{3!} + \cdots + (-1)^{n-1}\frac{x^{2n-1}}{(2n-1)!} + o(x^{2n}), sinx=x−3!x3+⋯+(−1)n−1(2n−1)!x2n−1+o(x2n),
cos x = 1 − x 2 2 ! + ⋯ + ( − 1 ) n x 2 n ( 2 n ) ! + o ( x 2 n ) . \cos x = 1 - \frac{x^2}{2!} + \cdots + (-1)^n\frac{x^{2n}}{(2n)!} + o(x^{2n}). cosx=1−2!x2+⋯+(−1)n(2n)!x2n+o(x2n). - 对数函数:
ln ( 1 + x ) = x − x 2 2 + ⋯ + ( − 1 ) n − 1 x n n + o ( x n ) . \ln(1+x) = x - \frac{x^2}{2} + \cdots + (-1)^{n-1}\frac{x^n}{n} + o(x^n). ln(1+x)=x−2x2+⋯+(−1)n−1nxn+o(xn). - 幂函数:
( 1 + x ) α = 1 + α x + α ( α − 1 ) 2 ! x 2 + ⋯ + α ( α − 1 ) ⋯ ( α − n + 1 ) n ! x n + o ( x n ) . (1+x)^\alpha = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^2 + \cdots + \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}x^n + o(x^n). (1+x)α=1+αx+2!α(α−1)x2+⋯+n!α(α−1)⋯(α−n+1)xn+o(xn).
求极限
lim
x
→
0
cos
x
−
e
−
x
2
2
x
4
.
\lim\limits_{x \to 0} \frac{\cos x - e^{-\frac{x^2}{2}}}{x^4}.
x→0limx4cosx−e−2x2.
解法1:泰勒展开
-
将 cos x \cos x cosx 和 e − x 2 2 e^{-\frac{x^2}{2}} e−2x2 展开到 x 4 x^4 x4 项:
- cos x = 1 − x 2 2 ! + x 4 4 ! + o ( x 4 ) = 1 − x 2 2 + x 4 24 + o ( x 4 ) \cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + o(x^4) = 1 - \frac{x^2}{2} + \frac{x^4}{24} + o(x^4) cosx=1−2!x2+4!x4+o(x4)=1−2x2+24x4+o(x4),
- e − x 2 2 = 1 − x 2 2 + ( x 2 2 ) 2 2 ! + o ( x 4 ) = 1 − x 2 2 + x 4 8 + o ( x 4 ) e^{-\frac{x^2}{2}} = 1 - \frac{x^2}{2} + \frac{(\frac{x^2}{2})^2}{2!} + o(x^4) = 1 - \frac{x^2}{2} + \frac{x^4}{8} + o(x^4) e−2x2=1−2x2+2!(2x2)2+o(x4)=1−2x2+8x4+o(x4)。
-
代入极限式:
cos x − e − x 2 2 = ( 1 24 − 1 8 ) x 4 + o ( x 4 ) = − 1 12 x 4 + o ( x 4 ) . \cos x - e^{-\frac{x^2}{2}} = \left( \frac{1}{24} - \frac{1}{8} \right)x^4 + o(x^4) = -\frac{1}{12}x^4 + o(x^4). cosx−e−2x2=(241−81)x4+o(x4)=−121x4+o(x4). -
因此:
lim x → 0 − 1 12 x 4 + o ( x 4 ) x 4 = − 1 12 . \lim\limits_{x \to 0} \frac{-\frac{1}{12}x^4 + o(x^4)}{x^4} = -\frac{1}{12}. x→0limx4−121x4+o(x4)=−121.
答案: − 1 12 -\dfrac{1}{12} −121
总结
- 泰勒公式适用于复杂函数的极限计算,尤其是含高阶无穷小的题目。
- 展开时需根据分母的阶数确定展开的精度(如本题需展开到 x 4 x^4 x4)。
- 皮亚诺余项 o ( x n ) o(x^n) o(xn) 表示比 x n x^n xn 更高阶的无穷小。
1.4.5 利用夹逼准则求极限
常用结论
lim n → ∞ a 1 n + a 2 n + ⋅ ⋅ ⋅ + a m n n = a \lim\limits_{n \to \infty} \sqrt[n]{a_1^n+a_2^n+···+a_m^n} = a n→∞limna1n+a2n+⋅⋅⋅+amn=a
1.4.6 利用单调有界准则求极限
单调有界定理
若数列
{
x
n
}
\{x_n\}
{xn} 单调递增且有上界(或单调递减且有下界),则
{
x
n
}
\{x_n\}
{xn} 收敛。
设 x 1 > 0 x_1 > 0 x1>0, x n + 1 = 1 2 ( x n + 1 x n ) x_{n+1} = \frac{1}{2} \left( x_n + \frac{1}{x_n} \right) xn+1=21(xn+xn1),求 lim n → ∞ x n \lim\limits_{n \to \infty} x_n n→∞limxn。
解题步骤:
- 证明数列有下界:
由均值不等式, x n + 1 ≥ x n ⋅ 1 x n = 1 x_{n+1} \geq \sqrt{x_n \cdot \frac{1}{x_n}} = 1 xn+1≥xn⋅xn1=1,故 x n ≥ 1 x_n \geq 1 xn≥1( n ≥ 2 n \geq 2 n≥2)。 - 证明数列单调递减:
- 当 x n ≥ 1 x_n \geq 1 xn≥1 时, x n + 1 − x n = 1 − x n 2 2 x n ≤ 0 x_{n+1} - x_n = \frac{1 - x_n^2}{2x_n} \leq 0 xn+1−xn=2xn1−xn2≤0。
- 或通过比值: x n + 1 x n = 1 2 ( 1 + 1 x n 2 ) ≤ 1 \frac{x_{n+1}}{x_n} = \frac{1}{2} \left( 1 + \frac{1}{x_n^2} \right) \leq 1 xnxn+1=21(1+xn21)≤1(因 x n ≥ 1 x_n \geq 1 xn≥1)。
- 求极限:
设 lim n → ∞ x n = a \lim\limits_{n \to \infty} x_n = a n→∞limxn=a,对递推式取极限得:
a = 1 2 ( a + 1 a ) ⟹ a 2 = 1 ⟹ a = 1 ( 舍去 a = − 1 ) . a = \frac{1}{2} \left( a + \frac{1}{a} \right) \implies a^2 = 1 \implies a = 1 \quad (\text{舍去 } a = -1). a=21(a+a1)⟹a2=1⟹a=1(舍去 a=−1).
结论: lim n → ∞ x n = 1 \lim\limits_{n \to \infty} x_n = 1 n→∞limxn=1。
1.4.7 利用定积分定义求极限
定积分定义 若
f
(
x
)
f(x)
f(x) 在
[
a
,
b
]
[a, b]
[a,b] 上可积,则:
lim
n
→
∞
1
n
∑
k
=
1
n
f
(
a
+
k
(
b
−
a
)
n
)
=
∫
a
b
f
(
x
)
d
x
.
\lim\limits_{n \to \infty} \frac{1}{n} \sum_{k=1}^n f\left( a + \frac{k(b-a)}{n} \right) = \int_a^b f(x) dx.
n→∞limn1k=1∑nf(a+nk(b−a))=∫abf(x)dx.
求极限:
lim
n
→
∞
(
1
n
+
1
+
1
n
+
2
+
⋯
+
1
n
+
n
)
.
\lim\limits_{n \to \infty} \left( \frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{n+n} \right).
n→∞lim(n+11+n+21+⋯+n+n1).
解题步骤:
- 改写为求和形式:
lim n → ∞ ∑ k = 1 n 1 n + k = lim n → ∞ 1 n ∑ k = 1 n 1 1 + k n . \lim\limits_{n \to \infty} \sum_{k=1}^n \frac{1}{n+k} = \lim\limits_{n \to \infty} \frac{1}{n} \sum_{k=1}^n \frac{1}{1 + \frac{k}{n}}. n→∞limk=1∑nn+k1=n→∞limn1k=1∑n1+nk1. - 识别定积分形式:
取 f ( x ) = 1 1 + x f(x) = \frac{1}{1+x} f(x)=1+x1,区间 [ 0 , 1 ] [0, 1] [0,1],则:
lim n → ∞ 1 n ∑ k = 1 n f ( k n ) = ∫ 0 1 1 1 + x d x = ln ( 1 + x ) ∣ 0 1 = ln 2. \lim\limits_{n \to \infty} \frac{1}{n} \sum_{k=1}^n f\left( \frac{k}{n} \right) = \int_0^1 \frac{1}{1+x} dx = \ln(1+x) \Big|_0^1 = \ln 2. n→∞limn1k=1∑nf(nk)=∫011+x1dx=ln(1+x) 01=ln2.
结论:极限值为 ln 2 \ln 2 ln2。
利用定积分定义求极限的一般方法是先提可爱因子 1 n \frac{1}{n} n1,然后再确定被积函数和积分区间
二、函数
2.1 间断点及其分类
1. 间断点的定义
定义 若 f ( x ) f(x) f(x) 在 x 0 x_0 x0的某去心邻域内有定义,但在 x 0 x_0 x0处不连续,则称 x 0 x_0 x0为 f ( x ) f(x) f(x)的间断点。
2. 间断点的分类
-
第一类间断点:左、右极限都存在。
- 可去间断点:左、右极限存在且相等 lim x → x 0 − f ( x ) = lim x → x 0 + f ( x ) ≠ f ( x 0 ) \lim\limits_{x \to x_0^-} f(x) = \lim\limits_{x \to x_0^+} f(x) \neq f(x_0) x→x0−limf(x)=x→x0+limf(x)=f(x0)或 f ( x 0 ) f(x_0) f(x0) 无定义)。
- 跳跃间断点:左、右极限存在但不相等 lim x → x 0 − f ( x ) ≠ lim x → x 0 + f ( x ) ) \lim\limits_{x \to x_0^-} f(x) \neq \lim\limits_{x \to x_0^+} f(x)) x→x0−limf(x)=x→x0+limf(x))。
-
第二类间断点:左、右极限至少有一个不存在。
- 无穷间断点: lim x → x 0 f ( x ) = ∞ \lim\limits_{x \to x_0} f(x) = \infty x→x0limf(x)=∞ 或单侧极限为 ∞ \infty ∞。
- 振荡间断点:极限振荡不存在(如 sin 1 x \sin \frac{1}{x} sinx1在 x = 0 处 x=0处 x=0处)。
示例:
- 函数 y = sin 1 x y = \sin \frac{1}{x} y=sinx1 在 x = 0 x=0 x=0处无定义,且左、右极限均不存在(无限振荡),故 x = 0 x=0 x=0为振荡间断点。
2.2 连续性的运算与性质
定理
-
四则运算连续性:
若 f ( x ) f(x) f(x) 和 g ( x ) g(x) g(x) 在 x 0 x_0 x0 处连续,则以下函数在 x 0 x_0 x0 处也连续:- f ( x ) ± g ( x ) f(x) \pm g(x) f(x)±g(x)
- f ( x ) ⋅ g ( x ) f(x) \cdot g(x) f(x)⋅g(x)
- f ( x ) g ( x ) \frac{f(x)}{g(x)} g(x)f(x)( g ( x 0 ) ≠ 0 g(x_0) \neq 0 g(x0)=0)
-
复合函数连续性:
若 u = φ ( x ) u = \varphi(x) u=φ(x) 在 x 0 x_0 x0 处连续且 φ ( x 0 ) = u 0 \varphi(x_0) = u_0 φ(x0)=u0, y = f ( u ) y = f(u) y=f(u) 在 u 0 u_0 u0 处连续,则复合函数 y = f [ φ ( x ) ] y = f[\varphi(x)] y=f[φ(x)] 在 x 0 x_0 x0 处连续。 -
初等函数连续性:
- 基本初等函数在其定义域内连续。
- 初等函数在其定义区间内连续(定义区间是定义域内的区间)。
2.3 闭区间上连续函数的性质
定理
-
最值定理:
闭区间 [ a , b ] [a, b] [a,b] 上的连续函数 f ( x ) f(x) f(x) 必有最大值 M M M 和最小值 m m m。 -
有界性定理:
[ a , b ] [a, b] [a,b] 上的连续函数 f ( x ) f(x) f(x) 必有界(即存在 K > 0 K > 0 K>0,使得 ∣ f ( x ) ∣ ≤ K |f(x)| \leq K ∣f(x)∣≤K)。 -
介值定理:
若 f ( x ) f(x) f(x) 在 [ a , b ] [a, b] [a,b] 上连续,且 f ( a ) ≠ f ( b ) f(a) \neq f(b) f(a)=f(b),则对任意 C C C 介于 f ( a ) f(a) f(a) 和 f ( b ) f(b) f(b) 之间,存在 ξ ∈ ( a , b ) \xi \in (a, b) ξ∈(a,b) 使得 f ( ξ ) = C f(\xi) = C f(ξ)=C。 -
零点定理:
若 f ( x ) f(x) f(x) 在 [ a , b ] [a, b] [a,b] 上连续,且 f ( a ) ⋅ f ( b ) < 0 f(a) \cdot f(b) < 0 f(a)⋅f(b)<0,则存在 ξ ∈ ( a , b ) \xi \in (a, b) ξ∈(a,b) 使得 f ( ξ ) = 0 f(\xi) = 0 f(ξ)=0。
推论:
闭区间上的连续函数可取到最小值
m
m
m 和最大值
M
M
M 之间的所有值。
注
- 零点定理常用于证明方程根的存在性(如 f ( x ) = 0 f(x) = 0 f(x)=0 在 ( a , b ) (a, b) (a,b) 内有解)。
- 定义区间需严格属于定义域(如 x \sqrt{x} x 的定义区间为 [ 0 , + ∞ ) [0, +\infty) [0,+∞))。
示例应用
证明方程
x
3
−
3
x
+
1
=
0
x^3 - 3x + 1 = 0
x3−3x+1=0 在
(
1
,
2
)
(1, 2)
(1,2) 内有根:
- 设 f ( x ) = x 3 − 3 x + 1 f(x) = x^3 - 3x + 1 f(x)=x3−3x+1,则 f ( 1 ) = − 1 f(1) = -1 f(1)=−1, f ( 2 ) = 3 f(2) = 3 f(2)=3。
- 由零点定理,存在 ξ ∈ ( 1 , 2 ) \xi \in (1, 2) ξ∈(1,2) 使得 f ( ξ ) = 0 f(\xi) = 0 f(ξ)=0。
三、导数与微分
3.1 导数的定义
定义1(导数)
设函数
y
=
f
(
x
)
y=f(x)
y=f(x) 在点
x
0
x_0
x0 的某邻域内有定义,若极限
f
′
(
x
0
)
=
lim
Δ
x
→
0
f
(
x
0
+
Δ
x
)
−
f
(
x
0
)
Δ
x
f'(x_0) = \lim\limits_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}
f′(x0)=Δx→0limΔxf(x0+Δx)−f(x0)
存在,则称
f
(
x
)
f(x)
f(x) 在
x
0
x_0
x0 处可导,并称此极限为
f
(
x
)
f(x)
f(x) 在
x
0
x_0
x0 处的导数,记作
f
′
(
x
0
)
f'(x_0)
f′(x0) 或
d
y
d
x
∣
x
=
x
0
\left.\frac{dy}{dx}\right|_{x=x_0}
dxdy
x=x0。
定义2(单侧导数)
- 右导数: f + ′ ( x 0 ) = lim Δ x → 0 + f ( x 0 + Δ x ) − f ( x 0 ) Δ x f'_ +(x_0) = \lim\limits_{\Delta x \to 0^+} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} f+′(x0)=Δx→0+limΔxf(x0+Δx)−f(x0)
- 左导数: f − ′ ( x 0 ) = lim Δ x → 0 − f ( x 0 + Δ x ) − f ( x 0 ) Δ x f'_ -(x_0) = \lim\limits_{\Delta x \to 0^-} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} f−′(x0)=Δx→0−limΔxf(x0+Δx)−f(x0)
定理: f ( x ) f(x) f(x) 在 x 0 x_0 x0 处可导 ⇔ \Leftrightarrow ⇔ f + ′ ( x 0 ) = f − ′ ( x 0 ) f'_ +(x_0) = f'_ -(x_0) f+′(x0)=f−′(x0)。
3.2 微分的定义
定义(微分)
若函数
y
=
f
(
x
)
y=f(x)
y=f(x) 在
x
0
x_0
x0 处的增量
Δ
y
\Delta y
Δy 可表示为
Δ
y
=
A
Δ
x
+
o
(
Δ
x
)
(
Δ
x
→
0
)
,
\Delta y = A \Delta x + o(\Delta x) \quad (\Delta x \to 0),
Δy=AΔx+o(Δx)(Δx→0),
其中
A
A
A 与
Δ
x
\Delta x
Δx 无关,则称
f
(
x
)
f(x)
f(x) 在
x
0
x_0
x0 处可微,并称
A
Δ
x
A \Delta x
AΔx 为微分,记作
d
y
=
A
Δ
x
dy = A \Delta x
dy=AΔx 或
d
f
(
x
0
)
=
A
Δ
x
df(x_0) = A \Delta x
df(x0)=AΔx。
定理:
f
(
x
)
f(x)
f(x) 在
x
0
x_0
x0 处可微
⇔
\Leftrightarrow
⇔
f
(
x
)
f(x)
f(x) 在
x
0
x_0
x0 处可导,且
d
y
=
f
′
(
x
0
)
Δ
x
dy = f'(x_0) \Delta x
dy=f′(x0)Δx。
通常记
Δ
x
=
d
x
\Delta x = dx
Δx=dx,故
d
y
=
f
′
(
x
0
)
d
x
dy = f'(x_0) dx
dy=f′(x0)dx。
3.2.1 导数与微分的几何意义
(1) 导数的几何意义
-
切线斜率:导数 f ′ ( x 0 ) f'(x_0) f′(x0) 表示曲线 y = f ( x ) y = f(x) y=f(x) 在点$(x_0, f(x_0)) $ 处切线的斜率。
-
切线方程: y − f ( x 0 ) = f ′ ( x 0 ) ( x − x 0 ) y - f(x_0) = f'(x_0)(x - x_0) y−f(x0)=f′(x0)(x−x0)
- 若 f ′ ( x 0 ) ≠ 0 f'(x_0) \neq 0 f′(x0)=0,法线方程为: y − f ( x 0 ) = − 1 f ′ ( x 0 ) ( x − x 0 ) y - f(x_0) = -\frac{1}{f'(x_0)}(x - x_0) y−f(x0)=−f′(x0)1(x−x0)
- 若 f ′ ( x 0 ) = 0 f'(x_0) = 0 f′(x0)=0,切线为水平线 y = f ( x 0 ) y = f(x_0) y=f(x0)。
-
注:可导必存在切线,但存在切线未必可导(如 y = x 1 / 3 y = x^{1/3} y=x1/3 在 x = 0 x=0 x=0 处有垂直切线但不可导)。
(2) 微分的几何意义
- 微分 ( dy ):表示切线上纵坐标的增量,即: d y = f ′ ( x 0 ) d x dy = f'(x_0) dx dy=f′(x0)dx
- 实际增量 Δ y \Delta y Δy:表示曲线上纵坐标的真实增量: Δ y = f ( x 0 + Δ x ) − f ( x 0 ) \Delta y = f(x_0 + \Delta x) - f(x_0) Δy=f(x0+Δx)−f(x0)
- 关系:当 Δ x → 0 \Delta x \to 0 Δx→0 时, Δ y ≈ d y \Delta y \approx dy Δy≈dy,误差为高阶无穷小 o ( Δ x ) o(\Delta x) o(Δx)。
3.3 基本求导法则
(1) 高阶导数
n
n
n 阶导数记作:
f
(
n
)
(
x
)
=
d
n
y
d
x
n
f^{(n)}(x) = \frac{d^n y}{dx^n}
f(n)(x)=dxndny
常见高阶导数公式:
- ( e x ) ( n ) = e x (e^x)^{(n)} = e^x (ex)(n)=ex
- ( sin x ) ( n ) = sin ( x + n π 2 ) (\sin x)^{(n)} = \sin\left(x + \frac{n\pi}{2}\right) (sinx)(n)=sin(x+2nπ)
- ( cos x ) ( n ) = cos ( x + n π 2 ) (\cos x)^{(n)} = \cos\left(x + \frac{n\pi}{2}\right) (cosx)(n)=cos(x+2nπ)
- ( 1 1 + x ) ( n ) = ( − 1 ) n n ! ( 1 + x ) n + 1 \left(\frac{1}{1+x}\right)^{(n)} = (-1)^n \frac{n!}{(1+x)^{n+1}} (1+x1)(n)=(−1)n(1+x)n+1n!
(2)基本初等函数导数公式
- ( C ) ′ = 0 (C)' = 0 (C)′=0
- ( x α ) ′ = α x α − 1 (x^\alpha)' = \alpha x^{\alpha-1} (xα)′=αxα−1
- ( a x ) ′ = a x ln a (a^x)' = a^x \ln a (ax)′=axlna
- ( e x ) ′ = e x (e^x)' = e^x (ex)′=ex
- ( log a x ) ′ = 1 x ln a (\log_a x)' = \frac{1}{x \ln a} (logax)′=xlna1
- ( ln ∣ x ∣ ) ′ = 1 x (\ln |x|)' = \frac{1}{x} (ln∣x∣)′=x1
- ( sin x ) ′ = cos x (\sin x)' = \cos x (sinx)′=cosx
- ( cos x ) ′ = − sin x (\cos x)' = -\sin x (cosx)′=−sinx
- ( tan x ) ′ = sec 2 x (\tan x)' = \sec^2 x (tanx)′=sec2x
- ( cot x ) ′ = − csc 2 x (\cot x)' = -\csc^2 x (cotx)′=−csc2x
- ( sec x ) ′ = sec x tan x (\sec x)' = \sec x \tan x (secx)′=secxtanx
- ( csc x ) ′ = − csc x cot x (\csc x)' = -\csc x \cot x (cscx)′=−cscxcotx
- ( arcsin x ) ′ = 1 1 − x 2 (\arcsin x)' = \frac{1}{\sqrt{1-x^2}} (arcsinx)′=1−x21
- ( arccos x ) ′ = − 1 1 − x 2 (\arccos x)' = -\frac{1}{\sqrt{1-x^2}} (arccosx)′=−1−x21
- ( arctan x ) ′ = 1 1 + x 2 (\arctan x)' = \frac{1}{1+x^2} (arctanx)′=1+x21
- ( arccot x ) ′ = − 1 1 + x 2 (\operatorname{arccot} x)' = -\frac{1}{1+x^2} (arccotx)′=−1+x21
(3) 求导法则
3.3.1 有理运算法则:
- ( u ± v ) ′ = u ′ ± v ′ (u \pm v)' = u' \pm v' (u±v)′=u′±v′
- ( u v ) ′ = u ′ v + u v ′ (uv)' = u'v + uv' (uv)′=u′v+uv′
- ( u v ) ′ = u ′ v − u v ′ v 2 ( v ≠ 0 ) \left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2} \quad (v \neq 0) (vu)′=v2u′v−uv′(v=0)
3.3.2 复合函数求导(链式法则):
设
u
=
φ
(
x
)
u = \varphi(x)
u=φ(x) 可导,
y
=
f
(
u
)
y = f(u)
y=f(u) 可导,则
d
y
d
x
=
d
y
d
u
⋅
d
u
d
x
=
f
′
(
u
)
φ
′
(
x
)
\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = f'(u) \varphi'(x)
dxdy=dudy⋅dxdu=f′(u)φ′(x)
3.3.3 反函数求导
若
y
=
f
(
x
)
y=f(x)
y=f(x) 可导且
f
′
(
x
)
≠
0
f'(x) \neq 0
f′(x)=0,则反函数
x
=
f
−
1
(
y
)
x=f^{-1}(y)
x=f−1(y) 的导数为
d
x
d
y
=
1
f
′
(
x
)
\frac{dx}{dy} = \frac{1}{f'(x)}
dydx=f′(x)1。
3.3.4 隐函数求导
设函数 y = y ( x ) y = y(x) y=y(x) 由方程 F ( x , y ) = 0 F(x, y) = 0 F(x,y)=0 确定,求导步骤如下:
- 方程两边对
x
x
x 求导:
将 F ( x , y ) = 0 F(x, y) = 0 F(x,y)=0 视为关于 x x x 的恒等式,对 x x x 求导(注意 y y y 是 x x x 的函数,需使用链式法则)。 - 解出
y
′
y'
y′:
整理导数方程,解出 d y d x \frac{dy}{dx} dxdy。
或者:
若
F
(
x
,
y
)
F(x, y)
F(x,y) 可微且
∂
F
∂
y
≠
0
\frac{\partial F}{\partial y} \neq 0
∂y∂F=0,则:
d
y
d
x
=
−
∂
F
∂
x
∂
F
∂
y
\frac{dy}{dx} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}}
dxdy=−∂y∂F∂x∂F
(1993,数三) 函数
y
=
y
(
x
)
y = y(x)
y=y(x) 由方程
sin
(
x
2
+
y
2
)
+
e
x
−
x
y
2
=
0
\sin(x^2 + y^2) + e^x - xy^2 = 0
sin(x2+y2)+ex−xy2=0 确定,求
d
y
d
x
\frac{dy}{dx}
dxdy。
解题步骤:
- 对原方程两边求导:
d d x [ sin ( x 2 + y 2 ) + e x − x y 2 ] = 0 cos ( x 2 + y 2 ) ⋅ ( 2 x + 2 y d y d x ) + e x − ( y + 2 x y d y d x ) = 0 \begin{align*} \frac{d}{dx}\left[\sin(x^2 + y^2) + e^x - xy^2\right] &= 0 \\\\ \cos(x^2 + y^2) \cdot (2x + 2y\frac{dy}{dx}) + e^x - \left(y^+ 2xy\frac{dy}{dx}\right) &= 0 \end{align*} dxd[sin(x2+y2)+ex−xy2]cos(x2+y2)⋅(2x+2ydxdy)+ex−(y+2xydxdy)=0=0
2. 整理关于
d
y
d
x
\frac{dy}{dx}
dxdy 的方程:
2
x
cos
(
x
2
+
y
2
)
+
2
y
cos
(
x
2
+
y
2
)
d
y
d
x
+
e
x
−
y
2
−
2
x
y
d
y
d
x
=
0
[
2
y
cos
(
x
2
+
y
2
)
−
2
x
y
]
d
y
d
x
=
y
2
−
e
x
−
2
x
cos
(
x
2
+
y
2
)
\begin{align*} 2x\cos(x^2 + y^2) + 2y\cos(x^2 + y^2)\frac{dy}{dx} + e^x - y^2 - 2xy\frac{dy}{dx} &= 0 \\\\ \left[2y\cos(x^2 + y^2) - 2xy\right]\frac{dy}{dx} &= y^2 - e^x - 2x\cos(x^2 + y^2) \end{align*}
2xcos(x2+y2)+2ycos(x2+y2)dxdy+ex−y2−2xydxdy[2ycos(x2+y2)−2xy]dxdy=0=y2−ex−2xcos(x2+y2)
- 解出导数:
d y d x = y 2 − e x − 2 x cos ( x 2 + y 2 ) 2 y cos ( x 2 + y 2 ) − 2 x y \frac{dy}{dx} = \frac{y^2 - e^x - 2x\cos(x^2 + y^2)}{2y\cos(x^2 + y^2) - 2xy} dxdy=2ycos(x2+y2)−2xyy2−ex−2xcos(x2+y2)
关键点:
- 对 sin ( x 2 + y 2 ) \sin(x^2 + y^2) sin(x2+y2) 求导需用链式法则。
- 方程中 y y y 视为 x x x 的函数,故 x y 2 xy^2 xy2 的导数为 y 2 + 2 x y y ′ y^2 + 2xy y' y2+2xyy′。
注:
- 实际计算时,也可直接对原方程两边求导(无需引入 F F F),再解出 y ′ y' y′。
1101

被折叠的 条评论
为什么被折叠?



