高数基础知识(上)①


文章目录集合跳转


一、极限

1.1 常见左右极限问题

定义 左极限:若对任意给定的 ε > 0 \varepsilon > 0 ε>0,总存在 δ > 0 \delta > 0 δ>0,使得当 x 0 − δ < x < x 0 x_0 - \delta < x < x_0 x0δ<x<x0 时,恒有 ∣ f ( x ) − A ∣ < ε |f(x) - A| < \varepsilon f(x)A<ε,则称 A A A f ( x ) f(x) f(x) x → x 0 − x \to x_0^- xx0 时的左极限,记为
lim ⁡ x → x 0 − f ( x ) = A , 或 f ( x 0 − ) = A . \lim\limits_{x \to x_0^-} f(x) = A, \quad \text{或} \quad f(x_0^-) = A. xx0limf(x)=A,f(x0)=A.

右极限 若对任意给定的 ε > 0 \varepsilon > 0 ε>0,总存在 δ > 0 \delta > 0 δ>0,使得当 x 0 < x < x 0 + δ x_0 < x < x_0 + \delta x0<x<x0+δ 时,恒有 ∣ f ( x ) − A ∣ < ε |f(x) - A| < \varepsilon f(x)A<ε,则称 A A A f ( x ) f(x) f(x) x → x 0 + x \to x_0^+ xx0+ 时的右极限,记为
lim ⁡ x → x 0 + f ( x ) = A , 或 f ( x 0 + ) = A . \lim\limits_{x \to x_0^+} f(x) = A, \quad \text{或} \quad f(x_0^+) = A. xx0+limf(x)=A,f(x0+)=A.

定理 极限 lim ⁡ x → x 0 f ( x ) \lim\limits_{x \to x_0} f(x) xx0limf(x) 存在的充要条件是:
左极限 lim ⁡ x → x 0 − f ( x ) \lim\limits_{x \to x_0^-} f(x) xx0limf(x) 与右极限 lim ⁡ x → x 0 + f ( x ) \lim\limits_{x \to x_0^+} f(x) xx0+limf(x) 存在且相等


注:需分左右极限的情形 以下三类问题需分别计算左、右极限:

  1. 分段函数在分界点处的极限(如 lim ⁡ x → 0 ∣ x ∣ x \lim\limits_{x \to 0} \frac{|x|}{x} x0limxx);
  2. e ∞ e^\infty e 型极限
    • lim ⁡ x → 0 − e 1 / x = 0 \lim\limits_{x \to 0^-} e^{1/x} = 0 x0lime1/x=0 lim ⁡ x → 0 + e 1 / x = + ∞ \lim\limits_{x \to 0^+} e^{1/x} = +\infty x0+lime1/x=+
    • lim ⁡ x → − ∞ e x = 0 \lim\limits_{x \to -\infty} e^x = 0 xlimex=0 lim ⁡ x → + ∞ e x = + ∞ \lim\limits_{x \to +\infty} e^x = +\infty x+limex=+
  3. arctan ⁡ ∞ \arctan \infty arctan 型极限
    • lim ⁡ x → 0 − arctan ⁡ 1 x = − π 2 \lim\limits_{x \to 0^-} \arctan \frac{1}{x} = -\frac{\pi}{2} x0limarctanx1=2π lim ⁡ x → 0 + arctan ⁡ 1 x = π 2 \lim\limits_{x \to 0^+} \arctan \frac{1}{x} = \frac{\pi}{2} x0+limarctanx1=2π
    • lim ⁡ x → − ∞ arctan ⁡ x = − π 2 \lim\limits_{x \to -\infty} \arctan x = -\frac{\pi}{2} xlimarctanx=2π lim ⁡ x → + ∞ arctan ⁡ x = π 2 \lim\limits_{x \to +\infty} \arctan x = \frac{\pi}{2} x+limarctanx=2π

例题

(1992年,数一/二/三)当 x → 1 x \to 1 x1 时,函数 x 2 − 1 x − 1 e 1 / ( x − 1 ) \frac{x^2-1}{x-1} e^{1/(x-1)} x1x21e1/(x1) 的极限
(A) 等于 2 (B) 等于 0 (C ) 为 ∞ \infty  (D) 不存在但不为 ∞ \infty

解析
1. 左极限
lim ⁡ x → 1 − x 2 − 1 x − 1 e 1 / ( x − 1 ) = lim ⁡ x → 1 − ( x + 1 ) e 1 / ( x − 1 ) = 2 ⋅ 0 = 0. \lim\limits_{x \to 1^-} \frac{x^2-1}{x-1} e^{1/(x-1)} = \lim\limits_{x \to 1^-} (x+1) e^{1/(x-1)} = 2 \cdot 0 = 0. x1limx1x21e1/(x1)=x1lim(x+1)e1/(x1)=20=0.
2. 右极限
lim ⁡ x → 1 + x 2 − 1 x − 1 e 1 / ( x − 1 ) = lim ⁡ x → 1 + ( x + 1 ) e 1 / ( x − 1 ) = 2 ⋅ + ∞ = + ∞ . \lim\limits_{x \to 1^+} \frac{x^2-1}{x-1} e^{1/(x-1)} = \lim\limits_{x \to 1^+} (x+1) e^{1/(x-1)} = 2 \cdot +\infty = +\infty. x1+limx1x21e1/(x1)=x1+lim(x+1)e1/(x1)=2+=+∞.
结论:左右极限不相等,且一侧为无穷,故极限不存在且不为 ∞ \infty 。正确答案为 D

1.2 无穷小量

1.2.1 无穷小量的概念

若函数 f ( x ) f(x) f(x) x → x 0 x \to x_0 xx0(或 x → ∞ x \to \infty x)时的极限为零,则称 f ( x ) f(x) f(x) x → x 0 x \to x_0 xx0(或 x → ∞ x \to \infty x)的无穷小量

1.2.2 无穷小的比较

lim ⁡ α ( x ) = 0 \lim \alpha(x) = 0 limα(x)=0 lim ⁡ β ( x ) = 0 \lim \beta(x) = 0 limβ(x)=0,且 β ( x ) ≠ 0 \beta(x) \neq 0 β(x)=0

  1. 高阶:若 lim ⁡ α ( x ) β ( x ) = 0 \lim \frac{\alpha(x)}{\beta(x)} = 0 limβ(x)α(x)=0,记为 α ( x ) = o ( β ( x ) ) \alpha(x) = o(\beta(x)) α(x)=o(β(x))
  2. 低阶:若 lim ⁡ α ( x ) β ( x ) = ∞ \lim \frac{\alpha(x)}{\beta(x)} = \infty limβ(x)α(x)=
  3. 同阶:若 lim ⁡ α ( x ) β ( x ) = C ≠ 0 \lim \frac{\alpha(x)}{\beta(x)} = C \neq 0 limβ(x)α(x)=C=0
  4. 等价:若 lim ⁡ α ( x ) β ( x ) = 1 \lim \frac{\alpha(x)}{\beta(x)} = 1 limβ(x)α(x)=1,记为 α ( x ) ∼ β ( x ) \alpha(x) \sim \beta(x) α(x)β(x)
  5. 无穷小的阶:若 lim ⁡ α ( x ) [ β ( x ) ] k = C ≠ 0 \lim \frac{\alpha(x)}{[\beta(x)]^k} = C \neq 0 lim[β(x)]kα(x)=C=0,则称 α ( x ) \alpha(x) α(x) β ( x ) \beta(x) β(x) k k k 阶无穷小。

(2013, 数二)设 cos ⁡ x − 1 = x sin ⁡ α ( x ) \cos x - 1 = x \sin \alpha(x) cosx1=xsinα(x),其中 ∣ α ( x ) ∣ < π 2 |\alpha(x)| < \frac{\pi}{2} α(x)<2π,则当 x → 0 x \to 0 x0 时, α ( x ) \alpha(x) α(x)
(A) 比 x x x 高阶的无穷小量。
(B) 比 x x x 低阶的无穷小量。
(C ) 与 x x x 同阶但不等价的无穷小量。
(D) 与 x x x 等价的无穷小量。
解析
1. 已知当 x → 0 x \to 0 x0 时, cos ⁡ x − 1 ∼ − 1 2 x 2 \cos x - 1 \sim -\frac{1}{2}x^2 cosx121x2,因此:
− 1 2 x 2 = x sin ⁡ α ( x )    ⟹    sin ⁡ α ( x ) = − 1 2 x . -\frac{1}{2}x^2 = x \sin \alpha(x) \implies \sin \alpha(x) = -\frac{1}{2}x. 21x2=xsinα(x)sinα(x)=21x.
2. 由 ∣ α ( x ) ∣ < π 2 |\alpha(x)| < \frac{\pi}{2} α(x)<2π sin ⁡ α ( x ) ∼ α ( x ) \sin \alpha(x) \sim \alpha(x) sinα(x)α(x)(当 x → 0 x \to 0 x0),得:
α ( x ) ∼ − 1 2 x . \alpha(x) \sim -\frac{1}{2}x. α(x)21x.
3. 故 α ( x ) \alpha(x) α(x) x x x 同阶但不等价(系数为 − 1 2 ≠ 1 -\frac{1}{2} \neq 1 21=1)。
选择C


1.3 无穷大量

1.3.1 无穷大量的性质

  1. 两个无穷大量的积仍为无穷大量。
  2. 无穷大量与有界变量之和仍为无穷大量。

1.3.2 无穷大量与无界变量的关系

以数列为例说明两者的关系:

  • 无穷大量的定义:
    对任意 M > 0 M > 0 M>0,存在 N > 0 N > 0 N>0,当 n > N n > N n>N 时,恒有 ∣ x n ∣ > M |x_n| > M xn>M
  • 无界变量的定义:
    对任意 M > 0 M > 0 M>0,存在某个 N N N,使得 ∣ x N ∣ > M |x_N| > M xN>M

结论

  • 无穷大量必为无界变量。
  • 无界变量不一定是无穷大量。

证明数列
x n = { n , n 为奇数 , 0 , n 为偶数 x_n = \begin{cases} n, & n \text{为奇数}, \\\\ 0, & n \text{为偶数}\end{cases} xn= n,0,n为奇数,n为偶数
是无界变量但不是无穷大量。
证明
1. 无界性
  对任意 M > 0 M > 0 M>0,取奇数 n > M n > M n>M,则 x n = n > M x_n = n > M xn=n>M,故数列无界。
2. 非无穷大量
 对任意 N > 0 N > 0 N>0,总存在偶数 n > N n > N n>N(如 n = N + 1 n = N+1 n=N+1 N + 2 N+2 N+2),使得 x n = 0 x_n = 0 xn=0,不满足 ∣ x n ∣ > M |x_n| > M xn>M 对所有 n > N n > N n>N 成立。因此数列不是无穷大量。


1.4 常用的求极限方法(8种)

1.4.1 利用基本极限求极限

(1) 常用的基本极限

  • lim ⁡ x → 0 sin ⁡ x x = 1 \lim\limits_{x \to 0} \frac{\sin x}{x} = 1 x0limxsinx=1
  • lim ⁡ x → 0 ( 1 + x ) 1 x = e \lim\limits_{x \to 0} (1 + x)^{\frac{1}{x}} = e x0lim(1+x)x1=e
  • lim ⁡ x → ∞ ( 1 + 1 x ) x = e \lim\limits_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e xlim(1+x1)x=e
  • lim ⁡ x → 0 a x − 1 x = ln ⁡ a \lim\limits_{x \to 0} \frac{a^x - 1}{x} = \ln a x0limxax1=lna
  • lim ⁡ n → ∞ n n = 1 \lim\limits_{n \to \infty} \sqrt[n]{n} = 1 nlimnn =1
  • lim ⁡ n → ∞ a n = 1 ( a > 0 ) \lim\limits_{n \to \infty} \sqrt[n]{a} = 1 \quad (a > 0) nlimna =1(a>0)

有理分式极限
lim ⁡ x → ∞ a n x n + ⋯ + a 0 b m x m + ⋯ + b 0 = { a n b m , n = m , 0 , n < m , ∞ , n > m . \lim_{x \to \infty} \frac{a_n x^n + \cdots + a_0}{b_m x^m + \cdots + b_0} = \begin{cases} \frac{a_n}{b_m}, & n = m, \\\\ 0, & n < m, \\\\ \infty, & n > m. \end{cases} xlimbmxm++b0anxn++a0= bman,0,,n=m,n<m,n>m.

幂函数极限
lim ⁡ n → ∞ x n = { 0 , ∣ x ∣ < 1 , ∞ , ∣ x ∣ > 1 , 1 , x = 1 , 不存在 , x = − 1. \lim_{n \to \infty} x^n = \begin{cases} 0, & |x| < 1, \\\\ \infty, & |x| > 1, \\\\ 1, & x = 1, \\\\ \text{不存在}, & x = -1. \end{cases} nlimxn= 0,,1,不存在,x<1,x>1,x=1,x=1.

指数函数极限
lim ⁡ n → ∞ e n x = { 0 , x < 0 , + ∞ , x > 0 , 1 , x = 0. \lim_{n \to \infty} e^{nx} = \begin{cases} 0, & x < 0, \\\\ +\infty, & x > 0, \\\\ 1, & x = 0. \end{cases} nlimenx= 0,+,1,x<0,x>0,x=0.

(2) “ 1 ∞ 1^\infty 1”型极限常用结论

lim ⁡ α ( x ) = 0 \lim \alpha(x) = 0 limα(x)=0 lim ⁡ β ( x ) = ∞ \lim \beta(x) = \infty limβ(x)=,且 lim ⁡ α ( x ) β ( x ) = A \lim \alpha(x) \beta(x) = A limα(x)β(x)=A,则
lim ⁡ [ 1 + α ( x ) ] β ( x ) = e A . \lim [1 + \alpha(x)]^{\beta(x)} = e^A. lim[1+α(x)]β(x)=eA.

解题步骤
1. 写标准形式:原式 = lim ⁡ [ 1 + α ( x ) ] β ( x ) = \lim [1 + \alpha(x)]^{\beta(x)} =lim[1+α(x)]β(x)
2. 求极限: lim ⁡ α ( x ) β ( x ) = A \lim \alpha(x) \beta(x) = A limα(x)β(x)=A
3. 写结果:原式 = e A = e^A =eA


1.4.2 利用等价无穷小代换求极限

(1) 代换原则

  1. 乘除关系可以换
    α ∼ α 1 \alpha \sim \alpha_1 αα1, β ∼ β 1 \beta \sim \beta_1 ββ1,则
    lim ⁡ α β = lim ⁡ α 1 β = lim ⁡ α β 1 = lim ⁡ α 1 β 1 . \lim \frac{\alpha}{\beta} = \lim \frac{\alpha_1}{\beta} = \lim \frac{\alpha}{\beta_1} = \lim \frac{\alpha_1}{\beta_1}. limβα=limβα1=limβ1α=limβ1α1.

  2. 加减关系在一定条件下可以换

    • α ∼ α 1 \alpha \sim \alpha_1 αα1, β ∼ β 1 \beta \sim \beta_1 ββ1,且 lim ⁡ α 1 β 1 = A ≠ 1 \lim \frac{\alpha_1}{\beta_1} = A \neq 1 limβ1α1=A=1,则 α − β ∼ α 1 − β 1 \alpha - \beta \sim \alpha_1 - \beta_1 αβα1β1
    • α ∼ α 1 \alpha \sim \alpha_1 αα1, β ∼ β 1 \beta \sim \beta_1 ββ1,且 lim ⁡ α 1 β 1 = A ≠ − 1 \lim \frac{\alpha_1}{\beta_1} = A \neq -1 limβ1α1=A=1,则 α + β ∼ α 1 + β 1 \alpha + \beta \sim \alpha_1 + \beta_1 α+βα1+β1
  • 等价无穷小代换需验证条件(如 α ( x ) β ( x ) → 0 \alpha(x)\beta(x) \to 0 α(x)β(x)0)。
  • 乘除运算可直接代换,加减运算需谨慎(需满足系数不等条件)。

(2) 常用的等价无穷小(当 x → 0 x \to 0 x0 时)

  • 基本等价
    x ∼ sin ⁡ x ∼ tan ⁡ x ∼ arcsin ⁡ x ∼ arctan ⁡ x ∼ ln ⁡ ( 1 + x ) ∼ e x − 1 , x \sim \sin x \sim \tan x \sim \arcsin x \sim \arctan x \sim \ln(1+x) \sim e^x - 1, xsinxtanxarcsinxarctanxln(1+x)ex1,
    ( 1 + x ) α − 1 ∼ α x   ( α ≠ 0 ) , 1 − cos ⁡ x ∼ 1 2 x 2 , a x − 1 ∼ x ln ⁡ a . (1+x)^\alpha - 1 \sim \alpha x \ (\alpha \neq 0), \quad 1 - \cos x \sim \frac{1}{2}x^2, \quad a^x - 1 \sim x \ln a. (1+x)α1αx (α=0),1cosx21x2,ax1xlna.

  • 高阶等价
    x − sin ⁡ x ∼ 1 6 x 3 , tan ⁡ x − x ∼ 1 3 x 3 , x − ln ⁡ ( 1 + x ) ∼ 1 2 x 2 , x - \sin x \sim \frac{1}{6}x^3, \quad \tan x - x \sim \frac{1}{3}x^3, \quad x - \ln(1+x) \sim \frac{1}{2}x^2, xsinx61x3,tanxx31x3,xln(1+x)21x2,
    arcsin ⁡ x − x ∼ 1 6 x 3 , x − arctan ⁡ x ∼ 1 3 x 3 . \arcsin x - x \sim \frac{1}{6}x^3, \quad x - \arctan x \sim \frac{1}{3}x^3. arcsinxx61x3,xarctanx31x3.


(2016,数三)已知函数 f ( x ) f(x) f(x) 满足
lim ⁡ x → 0 1 + f ( x ) sin ⁡ 2 x − 1 e 3 x − 1 = 2 , \lim\limits_{x \to 0} \frac{\sqrt{1 + f(x)} \sin 2x - 1}{e^{3x} - 1} = 2, x0lime3x11+f(x) sin2x1=2,
则求 lim ⁡ x → 0 f ( x ) \lim\limits_{x \to 0} f(x) x0limf(x)
解析
1. 由 lim ⁡ x → 0 ( e 3 x − 1 ) = 0 \lim\limits_{x \to 0} (e^{3x} - 1) = 0 x0lim(e3x1)=0 及极限存在,得分子极限必为 0:
lim ⁡ x → 0 ( 1 + f ( x ) sin ⁡ 2 x − 1 ) = 0. \lim\limits_{x \to 0} \left(\sqrt{1 + f(x)} \sin 2x - 1\right) = 0. x0lim(1+f(x) sin2x1)=0.
2. 利用等价无穷小代换:

  • e 3 x − 1 ∼ 3 x e^{3x} - 1 \sim 3x e3x13x
  • 1 + f ( x ) sin ⁡ 2 x − 1 ∼ 1 2 f ( x ) sin ⁡ 2 x \sqrt{1 + f(x)} \sin 2x - 1 \sim \frac{1}{2} f(x) \sin 2x 1+f(x) sin2x121f(x)sin2x(当 f ( x ) → 0 f(x) \to 0 f(x)0 时)
  1. 代入极限式:
    lim ⁡ x → 0 1 2 f ( x ) sin ⁡ 2 x 3 x = 2    ⟹    lim ⁡ x → 0 f ( x ) ⋅ 2 x 6 x = 2    ⟹    lim ⁡ x → 0 f ( x ) = 6. \lim\limits_{x \to 0} \frac{\frac{1}{2} f(x) \sin 2x}{3x} = 2 \implies \lim\limits_{x \to 0} \frac{f(x) \cdot 2x}{6x} = 2 \implies \lim\limits_{x \to 0} f(x) = 6. x0lim3x21f(x)sin2x=2x0lim6xf(x)2x=2x0limf(x)=6.
    结论 lim ⁡ x → 0 f ( x ) = 6 \lim\limits_{x \to 0} f(x) = 6 x0limf(x)=6

极限计算示例
计算极限:
lim ⁡ x → 0 x ( cos ⁡ x − 1 ) 3 \lim\limits_{x \to 0} \frac{x (\cos x - 1)}{3} x0lim3x(cosx1)
解题过程

  1. 利用等价无穷小代换(当 x → 0 x \to 0 x0 时):

    • cos ⁡ x − 1 ∼ − 1 2 x 2 \cos x - 1 \sim -\frac{1}{2}x^2 cosx121x2
  2. 代入化简:
    lim ⁡ x → 0 x ( cos ⁡ x − 1 ) 3 = lim ⁡ x → 0 − 1 2 x 3 3 = lim ⁡ x → 0 ( − x 3 6 ) = 0. \lim\limits_{x \to 0} \frac{x (\cos x - 1)}{3} = \lim\limits_{x \to 0} \frac{-\frac{1}{2}x^3}{3} = \lim\limits_{x \to 0} \left(-\frac{x^3}{6}\right) = 0. x0lim3x(cosx1)=x0lim321x3=x0lim(6x3)=0.
    :上述步骤有误,正确过程如下:

  3. 重新计算:
    lim ⁡ x → 0 x ( cos ⁡ x − 1 ) 3 = 1 3 lim ⁡ x → 0 x ( cos ⁡ x − 1 ) = 1 3 ⋅ 0 = 0. \lim\limits_{x \to 0} \frac{x (\cos x - 1)}{3} = \frac{1}{3} \lim\limits_{x \to 0} x (\cos x - 1) = \frac{1}{3} \cdot 0 = 0. x0lim3x(cosx1)=31x0limx(cosx1)=310=0.


推广结论
x → 0 x \to 0 x0 时, ( 1 + x ) a − 1 ∼ a x (1 + x)^a - 1 \sim a x (1+x)a1ax
进一步推广:若 α ( x ) → 0 \alpha(x) \to 0 α(x)0 α ( x ) β ( x ) → 0 \alpha(x)\beta(x) \to 0 α(x)β(x)0,则
[ 1 + α ( x ) ] β ( x ) − 1 ∼ α ( x ) β ( x ) . [1 + \alpha(x)]^{\beta(x)} - 1 \sim \alpha(x)\beta(x). [1+α(x)]β(x)1α(x)β(x).
应用示例
( 1 + cos ⁡ x − 1 3 ) x − 1 ∼ x ( cos ⁡ x − 1 ) 3 . \left(1 + \frac{\cos x - 1}{3}\right)^x - 1 \sim \frac{x (\cos x - 1)}{3}. (1+3cosx1)x13x(cosx1).
验证
cos ⁡ x − 1 ∼ − 1 2 x 2 \cos x - 1 \sim -\frac{1}{2}x^2 cosx121x2,得
x ( cos ⁡ x − 1 ) 3 ∼ − x 3 6 → 0 ( x → 0 ) . \frac{x (\cos x - 1)}{3} \sim -\frac{x^3}{6} \to 0 \quad (x \to 0). 3x(cosx1)6x30(x0).


1.4.3 利用有理运算法则求极限

有理运算法则
lim ⁡ f ( x ) = A \lim f(x) = A limf(x)=A lim ⁡ g ( x ) = B \lim g(x) = B limg(x)=B,则:

  1. lim ⁡ [ f ( x ) ± g ( x ) ] = A ± B \lim [f(x) \pm g(x)] = A \pm B lim[f(x)±g(x)]=A±B
  2. lim ⁡ [ f ( x ) g ( x ) ] = A B \lim [f(x)g(x)] = AB lim[f(x)g(x)]=AB
  3. lim ⁡ [ f ( x ) g ( x ) ] = A B ( B ≠ 0 ) \lim \left[ \frac{f(x)}{g(x)} \right] = \frac{A}{B} \quad (B \neq 0) lim[g(x)f(x)]=BA(B=0)

【注】

  • (1) 存在 ± 不存在 = 不存在
  • (2) 不存在 ± 不存在 = 不一定
  • (3) 存在 ×(÷) 不存在 = 不一定
  • (4) 不存在 ×(÷) 不存在 = 不一定

常用结论

  1. lim ⁡ f ( x ) = A ≠ 0 \lim f(x) = A \neq 0 limf(x)=A=0,则 lim ⁡ f ( x ) g ( x ) = A lim ⁡ g ( x ) \lim f(x)g(x) = A \lim g(x) limf(x)g(x)=Alimg(x)。(极限非零因子可先计算)
  2. lim ⁡ f ( x ) g ( x ) \lim \frac{f(x)}{g(x)} limg(x)f(x) 存在且 lim ⁡ g ( x ) = 0 \lim g(x) = 0 limg(x)=0,则 lim ⁡ f ( x ) = 0 \lim f(x) = 0 limf(x)=0
  3. lim ⁡ f ( x ) g ( x ) = A ≠ 0 \lim \frac{f(x)}{g(x)} = A \neq 0 limg(x)f(x)=A=0 lim ⁡ f ( x ) = 0 \lim f(x) = 0 limf(x)=0,则 lim ⁡ g ( x ) = 0 \lim g(x) = 0 limg(x)=0

(2010,数三) 若 lim ⁡ x → 0 [ 1 x − ( 1 x − a ) e x ] = 1 \lim\limits_{x \to 0} \left[ \frac{1}{x} - \left( \frac{1}{x} - a \right) e^x \right] = 1 x0lim[x1(x1a)ex]=1,则 a a a 等于 ( )
(A) 0 (B) 1 (C ) 2 (D) 3

解析

  1. 化简极限式:
    lim ⁡ x → 0 [ 1 − e x x + a e x ] = 1. \lim\limits_{x \to 0} \left[ \frac{1 - e^x}{x} + a e^x \right] = 1. x0lim[x1ex+aex]=1.

  2. 计算各部分极限:

    • lim ⁡ x → 0 1 − e x x = − 1 \lim\limits_{x \to 0} \frac{1 - e^x}{x} = -1 x0limx1ex=1(等价代换 e x − 1 ∼ x e^x - 1 \sim x ex1x),
    • lim ⁡ x → 0 a e x = a \lim\limits_{x \to 0} a e^x = a x0limaex=a
  3. 由极限运算法则得: − 1 + a = 1    ⟹    a = 2 -1 + a = 1 \implies a = 2 1+a=1a=2
    答案:C


总结

  • 有理运算法则要求各部分极限存在,且分母极限非零。
  • 处理复杂极限时,可先拆分或化简,再逐项求极限。

1.4.4 利用洛必达法则求极限

洛必达法则 若满足以下条件:

  1. lim ⁡ x → x 0 f ( x ) = lim ⁡ x → x 0 g ( x ) = 0 \lim\limits_{x \to x_0} f(x) = \lim\limits_{x \to x_0} g(x) = 0 xx0limf(x)=xx0limg(x)=0 ∞ \infty
  2. f ( x ) f(x) f(x) g ( x ) g(x) g(x) x 0 x_0 x0 的去心邻域内可导,且 g ′ ( x ) ≠ 0 g'(x) \neq 0 g(x)=0
  3. lim ⁡ x → x 0 f ′ ( x ) g ′ ( x ) \lim\limits_{x \to x_0} \frac{f'(x)}{g'(x)} xx0limg(x)f(x) 存在(或为 ∞ \infty ),

则:
lim ⁡ x → x 0 f ( x ) g ( x ) = lim ⁡ x → x 0 f ′ ( x ) g ′ ( x ) . \lim\limits_{x \to x_0} \frac{f(x)}{g(x)} = \lim\limits_{x \to x_0} \frac{f'(x)}{g'(x)}. xx0limg(x)f(x)=xx0limg(x)f(x).


【注】

  1. 适用类型
    洛必达法则适用于七种未定式极限:

    • 直接应用: 0 0 \frac{0}{0} 00 ∞ ∞ \frac{\infty}{\infty}
    • 需转化后应用:
      • 0 ⋅ ∞ 0 \cdot \infty 0(化为 0 1 / ∞ \frac{0}{1/\infty} 1/∞0 ∞ 1 / 0 \frac{\infty}{1/0} 1/0),
      • ∞ − ∞ \infty - \infty (通分或提因式),
      • 1 ∞ 1^\infty 1 ∞ 0 \infty^0 0 0 0 0^0 00(取对数化为 0 0 \frac{0}{0} 00 ∞ ∞ \frac{\infty}{\infty} )。
  2. 注意事项

    • 使用前需验证条件(如是否为 0 0 \frac{0}{0} 00 ∞ ∞ \frac{\infty}{\infty} 型);
    • 若应用后仍为未定式,可重复使用;
    • 极限非零的因子可单独计算,简化运算;
    • 结合等价无穷小代换或恒等变形(如 ln ⁡ ( 1 + x ) ∼ x \ln(1+x) \sim x ln(1+x)x)可大幅简化过程。

示例说明
对于未定式 0 0 \frac{0}{0} 00 ∞ ∞ \frac{\infty}{\infty}

  1. 直接应用
    lim ⁡ x → 0 sin ⁡ x x → 洛必达 lim ⁡ x → 0 cos ⁡ x 1 = 1. \lim\limits_{x \to 0} \frac{\sin x}{x} \xrightarrow{\text{洛必达}} \lim\limits_{x \to 0} \frac{\cos x}{1} = 1. x0limxsinx洛必达 x0lim1cosx=1.

  2. 需转化类型

    • 1 ∞ 1^\infty 1 型: lim ⁡ x → ∞ ( 1 + 1 x ) x → 取对数 e lim ⁡ x → ∞ x ln ⁡ ( 1 + 1 / x ) = e 1 = e \lim\limits_{x \to \infty} \left(1 + \frac{1}{x}\right)^x \xrightarrow{\text{取对数}} e^{\lim\limits_{x \to \infty} x \ln(1+1/x)} = e^1 = e xlim(1+x1)x取对数 exlimxln(1+1/x)=e1=e

总结

  • 洛必达法则是解决未定式极限的有力工具,但需严格验证条件。
  • 灵活结合其他方法(如等价代换、因子分离)可提高计算效率。

1.4.5 利用泰勒公式求极限

定理(带皮亚诺余项的泰勒公式)
f ( x ) f(x) f(x) x = x 0 x = x_0 x=x0 n n n 阶可导,则
f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + ⋯ + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + o [ ( x − x 0 ) n ] . f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \cdots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + o[(x - x_0)^n]. f(x)=f(x0)+f(x0)(xx0)+2!f′′(x0)(xx0)2++n!f(n)(x0)(xx0)n+o[(xx0)n].
特别地,当 x 0 = 0 x_0 = 0 x0=0 时(麦克劳林公式):
f ( x ) = f ( 0 ) + f ′ ( 0 ) x + f ′ ′ ( 0 ) 2 ! x 2 + ⋯ + f ( n ) ( 0 ) n ! x n + o ( x n ) . f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(n)}(0)}{n!}x^n + o(x^n). f(x)=f(0)+f(0)x+2!f′′(0)x2++n!f(n)(0)xn+o(xn).


常用泰勒展开( x → 0 x \to 0 x0 时)

  1. 指数函数
    e x = 1 + x + x 2 2 ! + ⋯ + x n n ! + o ( x n ) . e^x = 1 + x + \frac{x^2}{2!} + \cdots + \frac{x^n}{n!} + o(x^n). ex=1+x+2!x2++n!xn+o(xn).
  2. 三角函数
    sin ⁡ x = x − x 3 3 ! + ⋯ + ( − 1 ) n − 1 x 2 n − 1 ( 2 n − 1 ) ! + o ( x 2 n ) , \sin x = x - \frac{x^3}{3!} + \cdots + (-1)^{n-1}\frac{x^{2n-1}}{(2n-1)!} + o(x^{2n}), sinx=x3!x3++(1)n1(2n1)!x2n1+o(x2n),
    cos ⁡ x = 1 − x 2 2 ! + ⋯ + ( − 1 ) n x 2 n ( 2 n ) ! + o ( x 2 n ) . \cos x = 1 - \frac{x^2}{2!} + \cdots + (-1)^n\frac{x^{2n}}{(2n)!} + o(x^{2n}). cosx=12!x2++(1)n(2n)!x2n+o(x2n).
  3. 对数函数
    ln ⁡ ( 1 + x ) = x − x 2 2 + ⋯ + ( − 1 ) n − 1 x n n + o ( x n ) . \ln(1+x) = x - \frac{x^2}{2} + \cdots + (-1)^{n-1}\frac{x^n}{n} + o(x^n). ln(1+x)=x2x2++(1)n1nxn+o(xn).
  4. 幂函数
    ( 1 + x ) α = 1 + α x + α ( α − 1 ) 2 ! x 2 + ⋯ + α ( α − 1 ) ⋯ ( α − n + 1 ) n ! x n + o ( x n ) . (1+x)^\alpha = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^2 + \cdots + \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}x^n + o(x^n). (1+x)α=1+αx+2!α(α1)x2++n!α(α1)(αn+1)xn+o(xn).

更多泰勒公式


求极限
lim ⁡ x → 0 cos ⁡ x − e − x 2 2 x 4 . \lim\limits_{x \to 0} \frac{\cos x - e^{-\frac{x^2}{2}}}{x^4}. x0limx4cosxe2x2.

解法1:泰勒展开

  1. cos ⁡ x \cos x cosx e − x 2 2 e^{-\frac{x^2}{2}} e2x2 展开到 x 4 x^4 x4 项:

    • cos ⁡ x = 1 − x 2 2 ! + x 4 4 ! + o ( x 4 ) = 1 − x 2 2 + x 4 24 + o ( x 4 ) \cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + o(x^4) = 1 - \frac{x^2}{2} + \frac{x^4}{24} + o(x^4) cosx=12!x2+4!x4+o(x4)=12x2+24x4+o(x4)
    • e − x 2 2 = 1 − x 2 2 + ( x 2 2 ) 2 2 ! + o ( x 4 ) = 1 − x 2 2 + x 4 8 + o ( x 4 ) e^{-\frac{x^2}{2}} = 1 - \frac{x^2}{2} + \frac{(\frac{x^2}{2})^2}{2!} + o(x^4) = 1 - \frac{x^2}{2} + \frac{x^4}{8} + o(x^4) e2x2=12x2+2!(2x2)2+o(x4)=12x2+8x4+o(x4)
  2. 代入极限式:
    cos ⁡ x − e − x 2 2 = ( 1 24 − 1 8 ) x 4 + o ( x 4 ) = − 1 12 x 4 + o ( x 4 ) . \cos x - e^{-\frac{x^2}{2}} = \left( \frac{1}{24} - \frac{1}{8} \right)x^4 + o(x^4) = -\frac{1}{12}x^4 + o(x^4). cosxe2x2=(24181)x4+o(x4)=121x4+o(x4).

  3. 因此:
    lim ⁡ x → 0 − 1 12 x 4 + o ( x 4 ) x 4 = − 1 12 . \lim\limits_{x \to 0} \frac{-\frac{1}{12}x^4 + o(x^4)}{x^4} = -\frac{1}{12}. x0limx4121x4+o(x4)=121.

答案 − 1 12 -\dfrac{1}{12} 121


总结

  • 泰勒公式适用于复杂函数的极限计算,尤其是含高阶无穷小的题目。
  • 展开时需根据分母的阶数确定展开的精度(如本题需展开到 x 4 x^4 x4)。
  • 皮亚诺余项 o ( x n ) o(x^n) o(xn) 表示比 x n x^n xn 更高阶的无穷小。

1.4.5 利用夹逼准则求极限

常用结论

lim ⁡ n → ∞ a 1 n + a 2 n + ⋅ ⋅ ⋅ + a m n n = a \lim\limits_{n \to \infty} \sqrt[n]{a_1^n+a_2^n+···+a_m^n} = a nlimna1n+a2n+⋅⋅⋅+amn =a


1.4.6 利用单调有界准则求极限

单调有界定理
若数列 { x n } \{x_n\} {xn} 单调递增且有上界(或单调递减且有下界),则 { x n } \{x_n\} {xn} 收敛。


x 1 > 0 x_1 > 0 x1>0 x n + 1 = 1 2 ( x n + 1 x n ) x_{n+1} = \frac{1}{2} \left( x_n + \frac{1}{x_n} \right) xn+1=21(xn+xn1),求 lim ⁡ n → ∞ x n \lim\limits_{n \to \infty} x_n nlimxn

解题步骤

  1. 证明数列有下界
    由均值不等式, x n + 1 ≥ x n ⋅ 1 x n = 1 x_{n+1} \geq \sqrt{x_n \cdot \frac{1}{x_n}} = 1 xn+1xnxn1 =1,故 x n ≥ 1 x_n \geq 1 xn1 n ≥ 2 n \geq 2 n2)。
  2. 证明数列单调递减
    • x n ≥ 1 x_n \geq 1 xn1 时, x n + 1 − x n = 1 − x n 2 2 x n ≤ 0 x_{n+1} - x_n = \frac{1 - x_n^2}{2x_n} \leq 0 xn+1xn=2xn1xn20
    • 或通过比值: x n + 1 x n = 1 2 ( 1 + 1 x n 2 ) ≤ 1 \frac{x_{n+1}}{x_n} = \frac{1}{2} \left( 1 + \frac{1}{x_n^2} \right) \leq 1 xnxn+1=21(1+xn21)1(因 x n ≥ 1 x_n \geq 1 xn1)。
  3. 求极限
    lim ⁡ n → ∞ x n = a \lim\limits_{n \to \infty} x_n = a nlimxn=a,对递推式取极限得:
    a = 1 2 ( a + 1 a )    ⟹    a 2 = 1    ⟹    a = 1 ( 舍去  a = − 1 ) . a = \frac{1}{2} \left( a + \frac{1}{a} \right) \implies a^2 = 1 \implies a = 1 \quad (\text{舍去 } a = -1). a=21(a+a1)a2=1a=1(舍去 a=1).

结论 lim ⁡ n → ∞ x n = 1 \lim\limits_{n \to \infty} x_n = 1 nlimxn=1


1.4.7 利用定积分定义求极限

定积分定义 f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b] 上可积,则:
lim ⁡ n → ∞ 1 n ∑ k = 1 n f ( a + k ( b − a ) n ) = ∫ a b f ( x ) d x . \lim\limits_{n \to \infty} \frac{1}{n} \sum_{k=1}^n f\left( a + \frac{k(b-a)}{n} \right) = \int_a^b f(x) dx. nlimn1k=1nf(a+nk(ba))=abf(x)dx.


求极限:
lim ⁡ n → ∞ ( 1 n + 1 + 1 n + 2 + ⋯ + 1 n + n ) . \lim\limits_{n \to \infty} \left( \frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{n+n} \right). nlim(n+11+n+21++n+n1).

解题步骤

  1. 改写为求和形式:
    lim ⁡ n → ∞ ∑ k = 1 n 1 n + k = lim ⁡ n → ∞ 1 n ∑ k = 1 n 1 1 + k n . \lim\limits_{n \to \infty} \sum_{k=1}^n \frac{1}{n+k} = \lim\limits_{n \to \infty} \frac{1}{n} \sum_{k=1}^n \frac{1}{1 + \frac{k}{n}}. nlimk=1nn+k1=nlimn1k=1n1+nk1.
  2. 识别定积分形式:
    f ( x ) = 1 1 + x f(x) = \frac{1}{1+x} f(x)=1+x1,区间 [ 0 , 1 ] [0, 1] [0,1],则:
    lim ⁡ n → ∞ 1 n ∑ k = 1 n f ( k n ) = ∫ 0 1 1 1 + x d x = ln ⁡ ( 1 + x ) ∣ 0 1 = ln ⁡ 2. \lim\limits_{n \to \infty} \frac{1}{n} \sum_{k=1}^n f\left( \frac{k}{n} \right) = \int_0^1 \frac{1}{1+x} dx = \ln(1+x) \Big|_0^1 = \ln 2. nlimn1k=1nf(nk)=011+x1dx=ln(1+x) 01=ln2.

结论:极限值为 ln ⁡ 2 \ln 2 ln2

利用定积分定义求极限的一般方法是先提可爱因子 1 n \frac{1}{n} n1,然后再确定被积函数和积分区间

二、函数

2.1 间断点及其分类

1. 间断点的定义

定义 f ( x ) f(x) f(x) x 0 x_0 x0的某去心邻域内有定义,但在 x 0 x_0 x0处不连续,则称 x 0 x_0 x0 f ( x ) f(x) f(x)间断点

2. 间断点的分类

  1. 第一类间断点:左、右极限都存在。

    • 可去间断点:左、右极限存在且相等 lim ⁡ x → x 0 − f ( x ) = lim ⁡ x → x 0 + f ( x ) ≠ f ( x 0 ) \lim\limits_{x \to x_0^-} f(x) = \lim\limits_{x \to x_0^+} f(x) \neq f(x_0) xx0limf(x)=xx0+limf(x)=f(x0) f ( x 0 ) f(x_0) f(x0) 无定义)。
    • 跳跃间断点:左、右极限存在但不相等 lim ⁡ x → x 0 − f ( x ) ≠ lim ⁡ x → x 0 + f ( x ) ) \lim\limits_{x \to x_0^-} f(x) \neq \lim\limits_{x \to x_0^+} f(x)) xx0limf(x)=xx0+limf(x))
  2. 第二类间断点:左、右极限至少有一个不存在。

    • 无穷间断点 lim ⁡ x → x 0 f ( x ) = ∞ \lim\limits_{x \to x_0} f(x) = \infty xx0limf(x)= 或单侧极限为 ∞ \infty
    • 振荡间断点:极限振荡不存在(如 sin ⁡ 1 x \sin \frac{1}{x} sinx1 x = 0 处 x=0处 x=0)。

示例

  • 函数 y = sin ⁡ 1 x y = \sin \frac{1}{x} y=sinx1 x = 0 x=0 x=0处无定义,且左、右极限均不存在(无限振荡),故 x = 0 x=0 x=0振荡间断点

2.2 连续性的运算与性质

定理

  1. 四则运算连续性
    f ( x ) f(x) f(x) g ( x ) g(x) g(x) x 0 x_0 x0 处连续,则以下函数在 x 0 x_0 x0 处也连续:

    • f ( x ) ± g ( x ) f(x) \pm g(x) f(x)±g(x)
    • f ( x ) ⋅ g ( x ) f(x) \cdot g(x) f(x)g(x)
    • f ( x ) g ( x ) \frac{f(x)}{g(x)} g(x)f(x) g ( x 0 ) ≠ 0 g(x_0) \neq 0 g(x0)=0
  2. 复合函数连续性
    u = φ ( x ) u = \varphi(x) u=φ(x) x 0 x_0 x0 处连续且 φ ( x 0 ) = u 0 \varphi(x_0) = u_0 φ(x0)=u0 y = f ( u ) y = f(u) y=f(u) u 0 u_0 u0 处连续,则复合函数 y = f [ φ ( x ) ] y = f[\varphi(x)] y=f[φ(x)] x 0 x_0 x0 处连续。

  3. 初等函数连续性

    • 基本初等函数在其定义域内连续。
    • 初等函数在其定义区间内连续(定义区间是定义域内的区间)。

2.3 闭区间上连续函数的性质

定理

  1. 最值定理
    闭区间 [ a , b ] [a, b] [a,b] 上的连续函数 f ( x ) f(x) f(x) 必有最大值 M M M 和最小值 m m m

  2. 有界性定理
    [ a , b ] [a, b] [a,b] 上的连续函数 f ( x ) f(x) f(x) 必有界(即存在 K > 0 K > 0 K>0,使得 ∣ f ( x ) ∣ ≤ K |f(x)| \leq K f(x)K)。

  3. 介值定理
    f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b] 上连续,且 f ( a ) ≠ f ( b ) f(a) \neq f(b) f(a)=f(b),则对任意 C C C 介于 f ( a ) f(a) f(a) f ( b ) f(b) f(b) 之间,存在 ξ ∈ ( a , b ) \xi \in (a, b) ξ(a,b) 使得 f ( ξ ) = C f(\xi) = C f(ξ)=C

  4. 零点定理
    f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b] 上连续,且 f ( a ) ⋅ f ( b ) < 0 f(a) \cdot f(b) < 0 f(a)f(b)<0,则存在 ξ ∈ ( a , b ) \xi \in (a, b) ξ(a,b) 使得 f ( ξ ) = 0 f(\xi) = 0 f(ξ)=0

推论
闭区间上的连续函数可取到最小值 m m m 和最大值 M M M 之间的所有值。


  • 零点定理常用于证明方程根的存在性(如 f ( x ) = 0 f(x) = 0 f(x)=0 ( a , b ) (a, b) (a,b) 内有解)。
  • 定义区间需严格属于定义域(如 x \sqrt{x} x 的定义区间为 [ 0 , + ∞ ) [0, +\infty) [0,+))。

示例应用
证明方程 x 3 − 3 x + 1 = 0 x^3 - 3x + 1 = 0 x33x+1=0 ( 1 , 2 ) (1, 2) (1,2) 内有根:

  1. f ( x ) = x 3 − 3 x + 1 f(x) = x^3 - 3x + 1 f(x)=x33x+1,则 f ( 1 ) = − 1 f(1) = -1 f(1)=1 f ( 2 ) = 3 f(2) = 3 f(2)=3
  2. 由零点定理,存在 ξ ∈ ( 1 , 2 ) \xi \in (1, 2) ξ(1,2) 使得 f ( ξ ) = 0 f(\xi) = 0 f(ξ)=0

三、导数与微分

3.1 导数的定义

定义1(导数)
设函数 y = f ( x ) y=f(x) y=f(x) 在点 x 0 x_0 x0 的某邻域内有定义,若极限
f ′ ( x 0 ) = lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x f'(x_0) = \lim\limits_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} f(x0)=Δx0limΔxf(x0+Δx)f(x0)
存在,则称 f ( x ) f(x) f(x) x 0 x_0 x0可导,并称此极限为 f ( x ) f(x) f(x) x 0 x_0 x0 处的导数,记作 f ′ ( x 0 ) f'(x_0) f(x0) d y d x ∣ x = x 0 \left.\frac{dy}{dx}\right|_{x=x_0} dxdy x=x0

定义2(单侧导数)

  • 右导数 f + ′ ( x 0 ) = lim ⁡ Δ x → 0 + f ( x 0 + Δ x ) − f ( x 0 ) Δ x f'_ +(x_0) = \lim\limits_{\Delta x \to 0^+} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} f+(x0)=Δx0+limΔxf(x0+Δx)f(x0)
  • 左导数 f − ′ ( x 0 ) = lim ⁡ Δ x → 0 − f ( x 0 + Δ x ) − f ( x 0 ) Δ x f'_ -(x_0) = \lim\limits_{\Delta x \to 0^-} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} f(x0)=Δx0limΔxf(x0+Δx)f(x0)

定理 f ( x ) f(x) f(x) x 0 x_0 x0 处可导 ⇔ \Leftrightarrow f + ′ ( x 0 ) = f − ′ ( x 0 ) f'_ +(x_0) = f'_ -(x_0) f+(x0)=f(x0)


3.2 微分的定义

定义(微分)
若函数 y = f ( x ) y=f(x) y=f(x) x 0 x_0 x0 处的增量 Δ y \Delta y Δy 可表示为
Δ y = A Δ x + o ( Δ x ) ( Δ x → 0 ) , \Delta y = A \Delta x + o(\Delta x) \quad (\Delta x \to 0), Δy=AΔx+o(Δx)(Δx0),
其中 A A A Δ x \Delta x Δx 无关,则称 f ( x ) f(x) f(x) x 0 x_0 x0可微,并称 A Δ x A \Delta x AΔx微分,记作 d y = A Δ x dy = A \Delta x dy=AΔx d f ( x 0 ) = A Δ x df(x_0) = A \Delta x df(x0)=AΔx

定理 f ( x ) f(x) f(x) x 0 x_0 x0 处可微 ⇔ \Leftrightarrow f ( x ) f(x) f(x) x 0 x_0 x0 处可导,且 d y = f ′ ( x 0 ) Δ x dy = f'(x_0) \Delta x dy=f(x0)Δx
通常记 Δ x = d x \Delta x = dx Δx=dx,故 d y = f ′ ( x 0 ) d x dy = f'(x_0) dx dy=f(x0)dx


3.2.1 导数与微分的几何意义

(1) 导数的几何意义

  • 切线斜率:导数 f ′ ( x 0 ) f'(x_0) f(x0) 表示曲线 y = f ( x ) y = f(x) y=f(x) 在点$(x_0, f(x_0)) $ 处切线的斜率。

  • 切线方程 y − f ( x 0 ) = f ′ ( x 0 ) ( x − x 0 ) y - f(x_0) = f'(x_0)(x - x_0) yf(x0)=f(x0)(xx0)

    • f ′ ( x 0 ) ≠ 0 f'(x_0) \neq 0 f(x0)=0,法线方程为: y − f ( x 0 ) = − 1 f ′ ( x 0 ) ( x − x 0 ) y - f(x_0) = -\frac{1}{f'(x_0)}(x - x_0) yf(x0)=f(x0)1(xx0)
    • f ′ ( x 0 ) = 0 f'(x_0) = 0 f(x0)=0,切线为水平线 y = f ( x 0 ) y = f(x_0) y=f(x0)
  • :可导必存在切线,但存在切线未必可导(如 y = x 1 / 3 y = x^{1/3} y=x1/3 x = 0 x=0 x=0 处有垂直切线但不可导)。

(2) 微分的几何意义

  • 微分 ( dy ):表示切线上纵坐标的增量,即: d y = f ′ ( x 0 ) d x dy = f'(x_0) dx dy=f(x0)dx
  • 实际增量 Δ y \Delta y Δy:表示曲线上纵坐标的真实增量: Δ y = f ( x 0 + Δ x ) − f ( x 0 ) \Delta y = f(x_0 + \Delta x) - f(x_0) Δy=f(x0+Δx)f(x0)
  • 关系:当 Δ x → 0 \Delta x \to 0 Δx0 时, Δ y ≈ d y \Delta y \approx dy Δydy,误差为高阶无穷小 o ( Δ x ) o(\Delta x) o(Δx)

3.3 基本求导法则

(1) 高阶导数

n n n 阶导数记作:
f ( n ) ( x ) = d n y d x n f^{(n)}(x) = \frac{d^n y}{dx^n} f(n)(x)=dxndny

常见高阶导数公式

  • ( e x ) ( n ) = e x (e^x)^{(n)} = e^x (ex)(n)=ex
  • ( sin ⁡ x ) ( n ) = sin ⁡ ( x + n π 2 ) (\sin x)^{(n)} = \sin\left(x + \frac{n\pi}{2}\right) (sinx)(n)=sin(x+2)
  • ( cos ⁡ x ) ( n ) = cos ⁡ ( x + n π 2 ) (\cos x)^{(n)} = \cos\left(x + \frac{n\pi}{2}\right) (cosx)(n)=cos(x+2)
  • ( 1 1 + x ) ( n ) = ( − 1 ) n n ! ( 1 + x ) n + 1 \left(\frac{1}{1+x}\right)^{(n)} = (-1)^n \frac{n!}{(1+x)^{n+1}} (1+x1)(n)=(1)n(1+x)n+1n!

(2)基本初等函数导数公式

  1. ( C ) ′ = 0 (C)' = 0 (C)=0
  2. ( x α ) ′ = α x α − 1 (x^\alpha)' = \alpha x^{\alpha-1} (xα)=αxα1
  3. ( a x ) ′ = a x ln ⁡ a (a^x)' = a^x \ln a (ax)=axlna
  4. ( e x ) ′ = e x (e^x)' = e^x (ex)=ex
  5. ( log ⁡ a x ) ′ = 1 x ln ⁡ a (\log_a x)' = \frac{1}{x \ln a} (logax)=xlna1
  6. ( ln ⁡ ∣ x ∣ ) ′ = 1 x (\ln |x|)' = \frac{1}{x} (lnx)=x1
  7. ( sin ⁡ x ) ′ = cos ⁡ x (\sin x)' = \cos x (sinx)=cosx
  8. ( cos ⁡ x ) ′ = − sin ⁡ x (\cos x)' = -\sin x (cosx)=sinx
  9. ( tan ⁡ x ) ′ = sec ⁡ 2 x (\tan x)' = \sec^2 x (tanx)=sec2x
  10. ( cot ⁡ x ) ′ = − csc ⁡ 2 x (\cot x)' = -\csc^2 x (cotx)=csc2x
  11. ( sec ⁡ x ) ′ = sec ⁡ x tan ⁡ x (\sec x)' = \sec x \tan x (secx)=secxtanx
  12. ( csc ⁡ x ) ′ = − csc ⁡ x cot ⁡ x (\csc x)' = -\csc x \cot x (cscx)=cscxcotx
  13. ( arcsin ⁡ x ) ′ = 1 1 − x 2 (\arcsin x)' = \frac{1}{\sqrt{1-x^2}} (arcsinx)=1x2 1
  14. ( arccos ⁡ x ) ′ = − 1 1 − x 2 (\arccos x)' = -\frac{1}{\sqrt{1-x^2}} (arccosx)=1x2 1
  15. ( arctan ⁡ x ) ′ = 1 1 + x 2 (\arctan x)' = \frac{1}{1+x^2} (arctanx)=1+x21
  16. ( arccot ⁡ x ) ′ = − 1 1 + x 2 (\operatorname{arccot} x)' = -\frac{1}{1+x^2} (arccotx)=1+x21

(3) 求导法则

3.3.1 有理运算法则:

  • ( u ± v ) ′ = u ′ ± v ′ (u \pm v)' = u' \pm v' (u±v)=u±v
  • ( u v ) ′ = u ′ v + u v ′ (uv)' = u'v + uv' (uv)=uv+uv
  • ( u v ) ′ = u ′ v − u v ′ v 2 ( v ≠ 0 ) \left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2} \quad (v \neq 0) (vu)=v2uvuv(v=0)

3.3.2 复合函数求导(链式法则):

u = φ ( x ) u = \varphi(x) u=φ(x) 可导, y = f ( u ) y = f(u) y=f(u) 可导,则
d y d x = d y d u ⋅ d u d x = f ′ ( u ) φ ′ ( x ) \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = f'(u) \varphi'(x) dxdy=dudydxdu=f(u)φ(x)

3.3.3 反函数求导

y = f ( x ) y=f(x) y=f(x) 可导且 f ′ ( x ) ≠ 0 f'(x) \neq 0 f(x)=0,则反函数 x = f − 1 ( y ) x=f^{-1}(y) x=f1(y) 的导数为
d x d y = 1 f ′ ( x ) \frac{dx}{dy} = \frac{1}{f'(x)} dydx=f(x)1


3.3.4 隐函数求导

设函数 y = y ( x ) y = y(x) y=y(x) 由方程 F ( x , y ) = 0 F(x, y) = 0 F(x,y)=0 确定,求导步骤如下:

  1. 方程两边对 x x x 求导:
    F ( x , y ) = 0 F(x, y) = 0 F(x,y)=0 视为关于 x x x 的恒等式,对 x x x 求导(注意 y y y x x x 的函数,需使用链式法则)。
  2. 解出 y ′ y' y
    整理导数方程,解出 d y d x \frac{dy}{dx} dxdy

或者:

F ( x , y ) F(x, y) F(x,y) 可微且 ∂ F ∂ y ≠ 0 \frac{\partial F}{\partial y} \neq 0 yF=0,则:
d y d x = − ∂ F ∂ x ∂ F ∂ y \frac{dy}{dx} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}} dxdy=yFxF


(1993,数三) 函数 y = y ( x ) y = y(x) y=y(x) 由方程 sin ⁡ ( x 2 + y 2 ) + e x − x y 2 = 0 \sin(x^2 + y^2) + e^x - xy^2 = 0 sin(x2+y2)+exxy2=0 确定,求 d y d x \frac{dy}{dx} dxdy

解题步骤

  1. 对原方程两边求导
    d d x [ sin ⁡ ( x 2 + y 2 ) + e x − x y 2 ] = 0 cos ⁡ ( x 2 + y 2 ) ⋅ ( 2 x + 2 y d y d x ) + e x − ( y + 2 x y d y d x ) = 0 \begin{align*} \frac{d}{dx}\left[\sin(x^2 + y^2) + e^x - xy^2\right] &= 0 \\\\ \cos(x^2 + y^2) \cdot (2x + 2y\frac{dy}{dx}) + e^x - \left(y^+ 2xy\frac{dy}{dx}\right) &= 0 \end{align*} dxd[sin(x2+y2)+exxy2]cos(x2+y2)(2x+2ydxdy)+ex(y+2xydxdy)=0=0

2. 整理关于 d y d x \frac{dy}{dx} dxdy 的方程
2 x cos ⁡ ( x 2 + y 2 ) + 2 y cos ⁡ ( x 2 + y 2 ) d y d x + e x − y 2 − 2 x y d y d x = 0 [ 2 y cos ⁡ ( x 2 + y 2 ) − 2 x y ] d y d x = y 2 − e x − 2 x cos ⁡ ( x 2 + y 2 ) \begin{align*} 2x\cos(x^2 + y^2) + 2y\cos(x^2 + y^2)\frac{dy}{dx} + e^x - y^2 - 2xy\frac{dy}{dx} &= 0 \\\\ \left[2y\cos(x^2 + y^2) - 2xy\right]\frac{dy}{dx} &= y^2 - e^x - 2x\cos(x^2 + y^2) \end{align*} 2xcos(x2+y2)+2ycos(x2+y2)dxdy+exy22xydxdy[2ycos(x2+y2)2xy]dxdy=0=y2ex2xcos(x2+y2)

  1. 解出导数
    d y d x = y 2 − e x − 2 x cos ⁡ ( x 2 + y 2 ) 2 y cos ⁡ ( x 2 + y 2 ) − 2 x y \frac{dy}{dx} = \frac{y^2 - e^x - 2x\cos(x^2 + y^2)}{2y\cos(x^2 + y^2) - 2xy} dxdy=2ycos(x2+y2)2xyy2ex2xcos(x2+y2)

关键点

  • sin ⁡ ( x 2 + y 2 ) \sin(x^2 + y^2) sin(x2+y2) 求导需用链式法则。
  • 方程中 y y y 视为 x x x 的函数,故 x y 2 xy^2 xy2 的导数为 y 2 + 2 x y y ′ y^2 + 2xy y' y2+2xyy

  • 实际计算时,也可直接对原方程两边求导(无需引入 F F F),再解出 y ′ y' y

高数基础知识(上)②

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值