【数据结构】八大排序之冒泡排序算法

本文详细介绍了冒泡排序的原理,提供了冒泡排序的代码实现,并讨论了如何通过交换标志进行优化。此外,还分析了冒泡排序在最好和最坏情况下的时间复杂度,分别是O(n)和O(n^2)。文章适合想要学习基础排序算法的读者。
摘要由CSDN通过智能技术生成

🦄个人主页:修修修也

🎏所属专栏:数据结构

⚙️操作环境:Visual Studio 2022


目录

一.冒泡排序简介及思路

二.冒泡排序的代码实现

三.冒泡排序的优化

四.冒泡排序的时间复杂度分析

结语


一.冒泡排序简介及思路

冒泡排序(Bubble Sort)是一种简单直观的交换排序算法

它的基本思想是:

  • 重复走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。
  • 走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成

这个算法的名字由来是因为越小(或越大)的元素会经由交换慢慢"浮"到数列的顶端。

算法动图演示如下:


二.冒泡排序的代码实现

算法实现步骤:(以升序为例)

  1. 比较相邻的元素。如果第一个比第二个大,就交换他们两个。
  2. 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。这步做完后,最后的元素会是最大的数。
  3. 针对所有的元素重复以上的步骤,除了最后一个。
  4. 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。

清楚了逻辑和概念之后,我们的代码实现就比较简单了。代码如下:

//交换函数
void Swap(int* a, int* b)
{
	int tmp = *a;
	*a = *b;
	*b = tmp;
}

//冒泡排序(升序
void BubbleSort(int* arr,int sz)
{
	int i = 0;
	for (i = 0; i < sz - 1; i++)
	{
		int j = 0;
		for(j = 0; j < sz - 1 - i; j++ )
		{	
			if (arr[j] > arr[j + 1])
			{
				Swap(&a[j], &a[j + 1]);
			}
		}
	}
}

在代码实现部分还有几点需要注意

  • 数组元素个数sz的计算需要在主函数内进行(或直接由主函数传入),不能在sort函数内进行,因为当将数组以传参的形式传递到sort函数内部时,数组名arr就仅代表数组首元素的地址了,这就会使得sort内部计算sz的值是1而不是我们预想的10,进而导致循环出错。
  • 变量i所创建的循环,循环一次就会将整个数组当次循环中最大(或最小)的数字交换到其最终会出现的位置上。因此我们每次j循环就可以只需要循环 sz - 1 - i 即可。

三.冒泡排序的优化

我们上面写的代码虽然已经按照冒泡排序的思路完成了实现,但其实可以再优化一些,举个例子:

假如算法执行到了某一步(可以是算法执行过程中的任意阶段),此时的数组元素顺序是这样的:

那么当我们交换完4和5这两个元素,这个数组显然就已经有序了:

数组有序后,下一次的算法执行过程中,j从0开始向后找有没有相邻的元素但顺序不对的地方:

当j直到找到内循环结束,都没发现一个相邻两元素顺序不对的地方,意味着所有相邻两元素都已经是有序的了,那么其实也就代表数组已经整体有序了.

  • 这时我们就完全可以终止排序了,因为数组已经完全有序了.

按照这个思路,我们在冒泡排序的交换逻辑中加入一个交换标志exchange,如果整个内循环走过来,都没有发生元素交换,那么也就意味着数组已经有序了,我们这时可以直接终止程序循环.

优化代码如下:

//交换函数
void Swap(int* a, int* b)
{
	int tmp = *a;
	*a = *b;
	*b = tmp;
}

//冒泡排序(升序
void BubbleSort(int* arr,int sz)
{
	for (int i = 0; i < sz - 1; i++)
	{
        bool exchang = false;

		for(int j = 0; j < sz - 1 - i; j++ )
		{	
			if (arr[j] > arr[j + 1])
			{
				Swap(&a[j], &a[j + 1]);
                exchange = true;
			}
		}
        if(exchange == false)
            break;
	}
}

四.冒泡排序的时间复杂度分析

📌最好情况时间复杂度

冒泡排序的最好情况当然是遇到一个一次都不用交换的数组,只是让j顺着数组对比一遍,发现数组从头到尾都有序,即数组完全顺序的情况:

易得此时的:

  • 算法执行次数为: n-1
  • 算法时间复杂度为: O(n)

📌最坏情况时间复杂度

冒泡排序的最坏情况是遇到的每一个元素都需要做交换,即数组完全逆序的情况:

此时算法每趟的交换次数累加起来就是(n-1)+(n-2)+.....+ 2 + 1 ,可以发现当算法执行结束,所有次数累加起来恰好是一个等差数列,我们利用求和公式可得

  • 算法执行总次数为: \frac{1}{2}n^{2}-\frac{1}{2}n
  • 算法时间复杂度为: O(n^{2})

结语

希望这篇冒泡排序算法详解能对大家有所帮助,欢迎大佬们留言或私信与我交流.

有关更多排序相关知识可以移步:

【数据结构】八大排序算法icon-default.png?t=N7T8http://t.csdnimg.cn/RXKYr

学海漫浩浩,我亦苦作舟!关注我,大家一起学习,一起进步!

 相关文章推荐

【数据结构】八大排序之冒泡排序算法

【数据结构】八大排序之希尔排序算法

【数据结构】八大排序之直接插入排序算法

【数据结构】八大排序之简单选择排序

【数据结构】八大排序之堆排序算法

【数据结构】八大排序之快速排序算法

【数据结构】八大排序算法之归并排序算法

【数据结构】八大排序之计数排序算法


数据结构排序算法篇思维导图:


评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

修修修也

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值