- 博客(15)
- 收藏
- 关注
原创 粒群优化算法,蚁群算法
初始时t=0,随机设置每个粒子位置。粒群P(t),每个粒子Pi∈P(t),位置为xi(t)4、改变每个粒子的速度矢量。vi(t)=w vi(t−1)+ρ(xpbest−xi(t))3、比较每个个体的当前性能与它至今有过的最佳性能(pbest),更新个体最佳位置。2、评价每个粒子性能。基于每个粒子当前位置,评估其性能为ℱ(xi(t))w 为惯性权重(通常取 0.5~1.0);6、回到步骤(2),重复递归直至收敛。全局最佳算法(gbest)5、移动粒子至新位置。
2025-06-11 16:27:04
264
原创 模糊计算笔记
集合CA(u)特征函数CA(u0)隶属度模糊集合隶属函数μF元素都映射为[0,1]若U为连续域时,模糊集合可以表示为:若U为离散域时,模糊集合可以表示为:(扎德表示法)若U为离散域时,模糊集合可以表示为:(向量表示法按论域元素的顺序排列逐一列出来几种模糊集合。
2025-06-09 19:49:30
933
原创 SOM笔记
在 Kohonen 模型里,输入数据通过突触连接传递到二维的后突触神经元阵列。当输入数据到来时,会在这个神经元阵列中找到一个 “获胜神经元”(Winning neuron ),其网格坐标(如2D网格中的行列号)即为降维后的表示。。这个获胜神经元的确定是基于它与输入数据在特征空间上的相似性(一般通过距离度量,如欧氏距离 ),即该神经元的权重向量与输入向量最接近。特点:降维:将高维输入数据映射到低维(通常为1维或2维)离散网格(如二维神经元阵列)。
2025-06-01 11:25:30
671
原创 SVM笔记
这里是要最小化1/2∥w∥^2 ,其目的是最大化间隔。在 SVM 中,间隔越大,分类器的泛化能力越强。两类样本中离超平面最近的点(即支持向量)到超平面的距离就是间隔2/∥w∥。对于样本点 (xi,yi),其中 yi∈{−1,1} 是类别标签,SVM 的决策函数为 wTxi+b。如果分类正确,则 yi(wTxi+b)>0。约束条件要求这一乘积至少为 1,进一步强化了分类的正确性。
2025-05-31 21:04:18
944
原创 MLP笔记
隐藏层借助激活函数对数据进行非线性变换,能学习和表示复杂的非线性关系。一些激活函数能归一化数据,比如 sigmoid 函数(1/(1+e^-z))把神经元输出压缩到 (0, 1) 区间,tanh 函数映射到 (-1, 1)区间,让网络训练更稳定。同时,激活函数可控制神经元输出状态,例如 ReLU 函数,输入小于 0 时输出为 0,大于 0 时输出等于输入值,能使部分神经元 “休眠”,实现网络稀疏表达,降低过拟合风险。
2025-05-31 15:24:29
1573
原创 sandbox上运行mapreduce程序
找到hadoop - sandbox - clientnode(客户端节点,用于向 Hadoop 集群提交作业、访问 HDFS 等操作。hadoop jar <JAR包路径> <主类名> [参数1] [输入路径] [输出路径]将文件复制到客户端容器的/home/sandbox/目录下。clientnode中进入到mymapreduce。2、在cmd进入到hadoop-sandbox文件下,运行。clientnode中,上传文件到HDFS。4、上传数据文件到sandbox。5、上传程序文件到sandbox。
2025-05-27 23:36:03
595
原创 线性回归笔记
目的找到一个直线 /(超)平面,使预测值与真实值之间的误差最小化预测函数均方误差(Mean Squared Error,MSE)代价函数我们要做的是找到一组(a1,a2,...,an),使均方误差代价函数最小。
2025-05-27 12:35:45
1986
原创 MPI for Python
分发数据:将列表数据分发到所有进程;一个进程得到一个,root也会得到一个,不重复;发送和接收的tag值需严格匹配,接收进程才能正确接收消息。获取MPI.COMM_WORLD中的进程总数。所有进程互相收集,得到完整数据列表。结束 MPI 环境并释放相关资源。发送原始数组(更快,要求数据类。root 向所有进程发送数据/收集数据:所有进程发数据到。所有进程都得到归约结果(无。接收 Python 对象,:接收来自任意进程的消息;向 root 进程请求数据。:接收任意标签的消息。归约操作(如求和),
2025-05-26 23:10:01
321
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅
1