线性回归笔记

线性回归


目的

        找到一个直线 /(超)平面,使预测值与真实值之间的误差最小化

预测函数

均方误差(Mean Squared Error,MSE)代价函数

我们要做的是

        找到一组(a1,a2,...,an),使均方误差代价函数最小

求系数a的过程:

梯度下降优化

分类

BGD:每一次更新梯度都用到全部样本

SGD:每一次更新梯度只用到一个随机样本 

 

MBGD:每一次更新梯度用部分样本

 

α是学习率,它控制每次参数更新的步长。

参数更新公式推导

梯度下降vs最小二乘法

梯度下降

        优:当特征较多时也适用,适用于各种模型 。缺:需调学习率、迭代次数可能较多

最小二乘法

        优:不需设置学习率,一次性算出解析解。缺:特征数量较大(>1000)时代价大,只适用于线性回归,不适于逻辑回归(借助逻辑函数(Sigmoid 函数 ),将线性回归的输出映射到 0 和 1 之间,以此预测事件发生概率。)等。

归一化 / 标准化

原因

        ①加速模型收敛
        ② 提升模型精度(使不同尺度特征同尺度具备可比较性,使不同尺度特征对目标变量的影响处于同一数量级)

适用

        KNN、K - means、SVM、LR 一般需要归一化 / 标准化
        DT - RF、XGBoost、LightGBM、Naive Bayes 对特征取值尺度不敏感,一般无需归一化 / 标准化

正则化

        正则化(Regularization)是用于防止模型过拟合和提高泛化能力的重要技术。它通过在损失函数中添加额外的 “惩罚项”,对模型参数进行约束,避免模型学习到训练数据中的噪声或复杂模式。

过拟合处理

        ① 降低 model 复杂度② 收集更多 data ③ 使用 PCA 降维(减少特征个数)④ 正则化项⑤ 集成多个 model

欠拟合处理

        ① 提高model 复杂度② 添加新特征③ 降低正则化系数

L1 正则化(Lasso Regression)

        J(w)是代价函数;w是模型的参数向量;λ>0。

        加入后面那一项后,在最小化目标函数 J(w) 时,不仅要考虑减小训练误差(原代价函数 ),还要考虑让参数 w 的绝对值之和尽量小。

       为什么要让参数 w 的绝对值之和尽量小?如果高次项的系数 w 很大,模型曲线会变得过于曲折,紧密贴合训练数据点。较大的参数值在遇到训练数据的微小变化时,可能导致模型输出产生较大波动。会使部分参数 w 趋向于 0 ,意味着对应的特征在模型中不起作用,从而实现了特征选择。

L2 正则化(Ridge Regression)

Elastic Net

 

        ρ 是比例系数(0≤ρ≤1 ),用于调节 L1 和 L2 正则项的权重。

 L1 正则化和 L2 正则化的对比

特性L1 正则化(Lasso)L2 正则化(Ridge)
数学形式绝对值和平方和
稀疏性✅ 产生稀疏解,部分权重=0❌ 权重接近0但不等于0
特征选择✅ 自动特征选择,剔除无关特征❌ 保留所有特征,仅降低权重
参数平滑❌ 部分参数归零,其余可能较大✅ 参数平滑,权重均匀缩小
鲁棒性❌ 对异常值敏感✅ 对异常值更稳定
解的唯一性❌ 可能多解(非唯一)✅ 唯一解(严格凸优化)
适用场景高维数据、特征选择特征相关性强、需稳定解,避免极端参数值,提高泛化能力
几何约束菱形(稀疏顶点解)圆形(均匀收缩)

回归的评价指标

均方误差

均方根误差

平均绝对误差

 

逻辑回归(Logistic Regression)

        虽名称含 “回归” ,但主要用于分类问题,尤其是二分类,也可扩展到多分类。基于线性回归,通过 Sigmoid 函数σ(z)将线性组合结果z转化为概率值,预测样本属于某一类的概率。

广义线性模型(Generalized Linear Model, GLM)

        w 是权重向量,x 是输入特征向量 ,b 是偏置项,g是链接函数的逆函数,链接函数g 的作用是将线性组合的结果映射到合适的范围。

        比如逻辑回归是广义线性模型的一种,g 为 链接函数Sigmoid 函数的逆函数。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值