一、L2正则化
L2正则化是一种用于防止模型过拟合的正则化技术,通过在损失函数中添加正则化项,从而模型在优化的过程中会使模型的权重保持在较小的值,从而防止模型过拟合。
其原理为通过在损失函数中加上权重的平方和,抑制权重的过大波动,小的权重值意味着模型其中的部分神经元的输出会较小,相当于使模型更简单、更具泛化性,能更好地在未见数据上表现避免模型对训练数据的过拟合。
添加了正则项的损失函数的表达式为:
其中,为权重向量w的L2范数平方,
是正则化强度的超参数,用于控制正则化项的权重。
L2正则化的作用:
①控制过拟合&#