深度学习之L2正则化(权重衰减)

一、L2正则化

        L2正则化是一种用于防止模型过拟合的正则化技术,通过在损失函数中添加正则化项,从而模型在优化的过程中会使模型的权重保持在较小的值,从而防止模型过拟合。

        其原理为通过在损失函数中加上权重的平方和,抑制权重的过大波动,小的权重值意味着模型其中的部分神经元的输出会较小,相当于使模型更简单、更具泛化性,能更好地在未见数据上表现避免模型对训练数据的过拟合。

        添加了正则项的损失函数的表达式为:

L_{reg}(y,y^{'})=L(y,y^{'})+\frac{\lambda }{2}\left \| w \right \|^{2}

其中,\left \| w \right \|^{2}为权重向量w的L2范数平方,\lambda是正则化强度的超参数,用于控制正则化项的权重。

        L2正则化的作用:

                ①控制过拟合&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值