模型库:
服务器端模型:
适合在服务器上部署的模型
端侧模型:
适合在移动端或嵌入端部署的轻量化模型
数据EDA
解压数据集
o:下次执行时覆盖
q:折叠输出
d:解压到的目录
yml文件:
格式:键值对或嵌套,字符串可以不加引号
optimizer:sgd#代表随机的梯度下降法
weight-decay:让参数不会变的很大很奇怪,设置太大模型无法收敛,设置太小会过拟合
多卡训练:
aistudio上尽量在终端执行
pdopt代表的是优化器的参数
pdparams代表的是模型的参数
滤掉输出:
> /dev/null
动态图利于调试和交互,但执行效率低,可优化点较少,所以需要导出为静态图,才能用于部署
模型导出
模型训练过程中保存的模型文件是包含前向预测和反向传播的过程,但世纪的工业部署不需要反向传播,所以需要将模型导出,扔掉反向传播
知识蒸馏
保证小模型在参数量不变的情况下,得到较大的性能提升,甚至获得与大模型相似的精度指标。
调参
执行python文件
%run 或者!python