讯飞AI开发者大赛(脑PET图像分析和疾病预测挑战赛)笔记

模型库:

服务器端模型:

适合在服务器上部署的模型

端侧模型:

适合在移动端或嵌入端部署的轻量化模型

数据EDA

解压数据集

o:下次执行时覆盖

q:折叠输出

d:解压到的目录

yml文件:

格式:键值对或嵌套,字符串可以不加引号

optimizer:sgd#代表随机的梯度下降法

weight-decay:让参数不会变的很大很奇怪,设置太大模型无法收敛,设置太小会过拟合

多卡训练:

aistudio上尽量在终端执行


pdopt代表的是优化器的参数

pdparams代表的是模型的参数

滤掉输出:

> /dev/null


动态图利于调试和交互,但执行效率低,可优化点较少,所以需要导出为静态图,才能用于部署

模型导出

模型训练过程中保存的模型文件是包含前向预测和反向传播的过程,但世纪的工业部署不需要反向传播,所以需要将模型导出,扔掉反向传播

知识蒸馏

保证小模型在参数量不变的情况下,得到较大的性能提升,甚至获得与大模型相似的精度指标。


调参

执行python文件

%run 或者!python

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值