用国产长文本大模型写小说,这个太强悍了 !

国外AI发展的如火如荼,国内也不遑多让,但各家都有不同的侧重点和亮点,百花齐放很是精彩。其中,我比较喜欢的就是智谱了。就在最近,在智谱 BigModel开放平台使用的首个支持1M上下文长度(约150-200万字)的大模型GLM-4-Long,给了我很多惊喜,下面跟大家重点介绍一下这个新模型到底有多牛逼?

1

GLM-4-Long 简介

GLM-4-Long是智谱 BigModel开放平台(bigmodel.cn)推出的一款先进语言模型,适用于需要大规模文本生成的应用场景。

GLM-4-Long有很多的实际应用场景:比如说,解读企业年报、学习论文文献、公司财务报表、阅读长篇小说甚至是分析总结长视频。关键是价格非常亲民,100万 tokens 只需1元 ,这简直是白给了,良心定价 !

2

GLM-4-Long详解

1、GLM-4-Long如何使用 ?

GLM-4-Long 现已在BigModel开放平台上开放API调用。

首先,我们先登录BigModel开放平台:

https://zhipuaishengchan.datasink.sensorsdata.cn/t/AF

注册登录账号,就可以 免费白嫖 领取2500万Tokens资源包 。不管你用不用,现在有看到免费的,不要白不要,你说呢 。

注册登录后,我们点击模型广场,可以看到很多个AI模型,我只截图了部分,往下拉还有很多 。

我们来实际测试一下吧,看看拥有1M上下文长度的GLM-4-Long表现究竟咋样~点击体验中心进去,选择模型是GLM-4-Long,就可以开始提问了。

下面我上传了一份特斯拉2023年的年度财报英文文件,我让GLM-4-Long模型总结这份财报数据,可以发现它可以很快的总结出来主要的财报数据,并且我们可以针对财报中的具体问题进行追问,因为GLM-4-Long已经具备一定的推理和记忆能力,能够理解和回应复杂的问题,这简直是那些金融从业者的福音 。

2、如何使用模型API?

我们以Python代码为例,需要先导包,输入命令



pip install zhipuai


然后在BigModel平台中获取API密钥,这个密钥千万不要告诉给其他人,不然可能会被其他人盗刷tokens,如下图所示:

将获取到的API密钥填入代码中即可调用,这只是一个简单案例,大家可以根据这个案例去扩展 。



from zhipuai import ZhipuAI  
  
client = ZhipuAI(api\_key="输入API密钥")  
  
response = client.chat.completions.create(  
    model="glm-4-long",  
    messages=\[  
        {  
            "role": "system",  
            "content": "你是一个乐于解答各种问题的助手,你的任务是为用户提供专业、准确、有见地的建议。"  
        },  
        {  
            "role": "user",  
            "content": "你好,你是什么模型?"  
        }  
    \],  
    top\_p= 0.7,  
    temperature= 0.95,  
    max\_tokens=4095,  
    tools = \[{"type":"web\_search","web\_search":{"search\_result":True}}\],  
    stream=True  
)  
for trunk in response:  
    print(trunk)


介绍了这么多,很多人不知道GLM-4-Long模型有哪些应用场景?接下来小猿会用2个实际案例带领大家更好的掌握这个模型 。

第1个案例: 我先用这个模型来制作一个科幻小说内容自动生成器,你只需要告诉程序你的创意,他就能根据用户的创意去构思小说情节以及根据构思出来的情节去生成一个完整的长篇科幻小说内容 。

为什么选择长篇科幻小说这个方向呢?大家都知道一本小说的内容是非常长的,短篇小说字数也达到了十几万字,长篇小说可以达到百万字,这个就很适合使用智谱AI新出的 GLM-4-Long 大模型, 该模型支持1M上下文长度(约150-200万字)。

为了成功搞出一个小说自动生成器应用,我们的构思如下:

1、面向10~30岁的人群,根据用户给出的主题,小说构思由大模型产出 。

2、我们根据模型给出的小说构思,去完善整个小说章节内容 。

好了,根据上面的2个内容,我们直接用Python代码来实现 。

我们先让用户给出主题,比如:“外星人侵略地球”



def make\_idea():  
    response = make\_client().chat.completions.create(  
        model='glm-4-long',  
        messages=\[  
            {'role': 'system', 'content': '你是一位擅长科幻小说的创意专家,你的任务是根据用户提供的主题,提供适合10岁到30岁的人阅读的、专业的、有见地的科幻小说内容创意。'},  
            {'role': 'user', 'content': '请以“外星人侵略地球”为主题,提供科幻小说内容创意。要求:情节要符合实际,故事要有情节。'},  
        \],  
        stream=True,  
    )  
  
    \# 流式输出  
    idea = ''  
    for chunk in response:  
        idea += chunk.choices\[0\].delta.content  
  
    return idea


运行程序,他会自动根据用户给的这个主题,生成科幻小说的内容创意,包括小说的类型、基调、故事背景、人物介绍、情节概述,都罗列得很清楚 。



\----------------------------- STRT:小说构思 -----------------------------  
# 《异域入侵》  
  
# 类型和基调  
科幻小说,紧张刺激,探索人类与外星文明的冲突与共存  
  
# 故事背景  
公元2130年,人类在科技和宇宙探索方面取得了巨大突破,地球联合政府(UEG)成立,旨在统一全球资源,推动太空殖民和防御外星威胁。UEG的太空舰队在执行一项秘密任务时,意外发现了一艘神秘的外星飞船,随后引发了一系列超出人类认知的冲突。  
  
# 人物介绍  
\- 李浩:UEG太空舰队指挥官,勇敢冷静,对未知充满好奇,但也深知人类的脆弱。  
\- 艾米丽:UEG科学家,专注于外星生物研究,聪明而敏感,对李浩有着复杂的情感。  
\- 罗伯特:UEG高级顾问,政治手腕高超,对李浩的决策持有怀疑态度。  
\- 外星领袖:一个神秘而强大的存在,其真实意图和身份对人类来说是个谜。  
  
# 情节概述  
#\# 第一章 - 神秘信号  
李浩率领的太空舰队在执行常规巡逻任务时,接收到一个来自未知星域的神秘信号。经过分析,他们认为这可能是一艘外星飞船的求救信号。UEG决定派遣一艘侦察船前往信号来源地。  
  
#\# 第二章 - 初次接触  
侦察船抵达信号来源地,发现了一艘严重受损的外星飞船。李浩和艾米丽带领一支小队进入飞船内部,发现了一些外星生物的遗体,以及一些未知的科技装置。艾米丽对这些装置产生了浓厚的兴趣。  
  
#\# 第三章 - 外星生物  
在一次意外中,艾米丽激活了外星装置,释放出一种未知能量。这种能量与地球生物产生了奇异的共鸣,导致艾米丽和外星生物之间建立了某种联系。同时,外星飞船的控制系统被激活,飞船开始向地球发送信号。  
  
#\# 第四章 - 外星领袖  
UEG收到了外星飞船的信号,发现外星生物的母星正面临灾难。外星领袖通过心灵感应与李浩联系,请求人类的帮助。李浩面临着艰难的抉择:是帮助外星人,还是保护地球的安全。  
  
#\# 第五章 - 人类的选择  
UEG内部对是否援助外星人产生了分歧。罗伯特等人认为外星人的真实意图不明,可能对地球构成威胁。李浩和艾米丽则认为这是人类展现责任和同情心的机会。最终,UEG决定派遣一支救援队伍前往外星母星。  
  
#\# 第六章 - 外星母星  
救援队伍抵达外星母星,发现那里的环境已经变得极端恶劣。外星领袖向李浩展示了他们的文明和面临的困境,请求人类的技术援助。李浩意识到,外星人的科技远超地球,但他们的社会结构和情感与人类相似。  
  
#\# 第七章 - 危机四伏  
在救援过程中,外星母星的环境不断恶化,救援队伍面临着前所未有的挑战。李浩和艾米丽与外星领袖建立了信任,共同制定了一个拯救外星母星的计划。  
  
#\# 第八章 - 生死抉择  
救援行动进入关键阶段,李浩和艾米丽必须冒险进入外星母星的核心区域。在那里,他们发现了一个可以稳定外星母星环境的装置,但启动它需要牺牲大量的能量。李浩和艾米丽做出了艰难的决定。  
  
#\# 第九章 - 和平的曙光  
装置成功启动,外星母星的环境逐渐恢复稳定。外星领袖对人类的援助表示感激,并承诺不再对地球构成威胁。李浩和艾米丽带着外星人的感激和对未知的敬畏返回地球。  
  
#\# 第十章 - 人类的未来  
回到地球后,李浩和艾米丽的经历引发了全球的关注。UEG开始重新评估与外星文明的关系,人类开始探索与外星文明和平共处的可能性。李浩和艾米丽的冒险成为了人类历史上的一个转折点,预示着一个新的宇宙时代的到来。


第二步,就是根据上面给出的科幻小说的内容创意,继续完善整个小说内容,代码如下:



def make\_content(idea: str):  
    response = make\_client().chat.completions.create(  
        model='glm-4-long',  
        messages=\[  
            {'role': 'system',  
             'content': '你是一位擅长科幻小说内容编写专家,你编写的故事幽默有趣,特别适合适合10岁到30岁的人阅读,你的任务是根据用户提供的小说创意,完成编写的整个小说内容。'},  
            {'role': 'user',  
             'content': f'请根据科幻小说内容创意,完成编写整个小说内容。\\n\\n故事内容要求:\\n故事内容分为10个小段,每个小段1000个汉字左右,故事总长度不少于10000个汉字。\\n\\n科幻小说创意:\\n{idea}'},  
        \],  
        stream=True,  
    )  
  
    \# 流式输出  
    content = ''  
    for chunk in response:  
        content += chunk.choices\[0\].delta.content  
  
    return content


我们来看一下运行的效果,发现使用GLM-4-Long生成的长篇小说内容还不错,比一些市面上现成的小说,内容还要更精彩 。到此,我们就完成了一个利用GLM-4-Long模型制作的小说自动生成器应用 。

第2个案例: 小猿再带领大家搞一个 20 行以内的代码,手搓一个用于论文解读的 AI 助手。大家都知道一篇论文少则几千字,多则几万字,很多小模型都很难胜任,接下来我会用智谱AI的 GLM-4-Long 模型来看看效果,代码如下:



\# 安装依赖 pip install -U --quiet zhipuai langchain pypdf  
from langchain.document\_loaders import PyPDFLoader  
from zhipuai import ZhipuAI  
import json  
  loader = PyPDFLoader("w25682.pdf")  
  pages = loader.load\_and\_split()  
  content = "\\n".join(\[x.page\_content for x in pages\])  
  client = ZhipuAI(api\_key="Your API key")  
  response = client.chat.completions.create(  
    model="glm-4-long",  
    messages=\[  
      {"role": "system","content": "你是一个论文解读专家。step-by-step全面深入地解读论文,并依次回答以下问题:Q1 这篇论文试图解决什么问题?\\Q2 这是一个新问题吗?\\Q3 这篇论文试图验证什么科学假设?\\Q4 有哪些相关研究?它们是如何分类的?在这个领域中有哪些值得注意的研究人员?\\Q5 论文中提到的解决方案的关键是什么?\\Q6 论文中的实验是如何进行设计的?\\Q7 用于定量评估的数据集是什么?代码是开源的吗?\\Q8 论文中的实验和结果是否很好地支持了需要验证的科学假设?\\Q9 这篇论文的具体贡献点是什么?\\Q10 下一步是什么?可以深入开展哪些工作?" },  
      {"role": "user","content": content}\],  
   top\_p= 0.7,  
   temperature= 0.95,  
   max\_tokens=4095,  
    stream=False  
)  
print(json.loads(response.json())\["choices"\]\[0\]\["message"\]\["content"))


运行程序以后,我先把一篇关于《AI和劳动力》的论文提交进去,看一下GLM-4-Long模型输出的效果,真的非常给力 。

我对比了论文看了一下这些回答,基本上都能理解正确。以前会觉得读论文很麻烦,现在不论多长的论文都能在 AI 的帮助下快速理清思路,概括出论文的核心概念、论述脉络、实验过程和创新点。这是大模型最擅长的领域,也是对科研工作者来说最能直接提效的方法。

通过上面介绍,我们发现GLM-4-Long这个模型真心牛逼,在各种需要长文本理解上,该模型都展现出了非常卓越的性能,而且价格便宜。GLM-4-Long 作为百万级上下文模型性价比很高,推荐大家去体验一波!

那么,如何系统的去学习大模型LLM?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~

篇幅有限,部分资料如下:

👉LLM大模型学习指南+路线汇总👈

💥大模型入门要点,扫盲必看!
在这里插入图片描述
💥既然要系统的学习大模型,那么学习路线是必不可少的,这份路线能帮助你快速梳理知识,形成自己的体系。

路线图很大就不一一展示了 (文末领取)
在这里插入图片描述

👉大模型入门实战训练👈

💥光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

👉国内企业大模型落地应用案例👈

💥两本《中国大模型落地应用案例集》 收录了近两年151个优秀的大模型落地应用案例,这些案例覆盖了金融、医疗、教育、交通、制造等众多领域,无论是对于大模型技术的研究者,还是对于希望了解大模型技术在实际业务中如何应用的业内人士,都具有很高的参考价值。 (文末领取)
在这里插入图片描述

👉GitHub海量高星开源项目👈

💥收集整理了海量的开源项目,地址、代码、文档等等全都下载共享给大家一起学习!
在这里插入图片描述

👉LLM大模型学习视频👈

💥观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。 (文末领取)
在这里插入图片描述

👉640份大模型行业报告(持续更新)👈

💥包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
在这里插入图片描述

👉获取方式:

这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

大模型国产替代是指在人工智能领域,国内自主研发和应用大规模预训练模型,以替代依赖于国外的大型模型。目前,国内已经有一些企业和研究机构在这方面取得了一定的进展。 首先,国内已经有一些大规模预训练模型的研发和应用。例如,百度推出的ERNIE(Enhanced Representation through Knowledge Integration)模型,腾讯推出的BERT(Bidirectional Encoder Representations from Transformers)模型等。这些模型在自然语言处理、文本生成等任务上取得了不错的效果。 其次,国内也在积极探索自主研发大规模预训练模型的路径。例如,中科院计算所推出的GPT(Generative Pre-trained Transformer)模型,通过自主研发和优化,取得了与国外同类模型相媲美的效果。此外,还有一些企业和研究机构在自主研发大规模预训练模型方面进行了一系列的尝试和实践。 然而,要实现真正的大模型国产替代,还面临一些挑战。首先是数据集的问题,大规模预训练模型需要大量的数据进行训练,而国内的数据集相对于国外来说还有一定的差距。其次是计算资源的问题,训练大规模模型需要庞大的计算资源,包括高性能的计算机和大规模的分布式训练平台。此外,还需要解决模型的可解释性、隐私保护等问题。 总体来说,大模型国产替代是可行的,但需要在数据集、计算资源、算法研发等方面进行持续投入和努力。通过国内企业、研究机构和政府的共同努力,相信在不久的将来,国内将能够自主研发和应用更多的大规模预训练模型。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值