ChatGPT+Python+Excel,提前下班三件套

本文介绍了在数据爆炸时代,如何通过Python与Excel结合,借助AI如ChatGPT,提高数据分析效率。Python的Numpy、Pandas、Matplotlib和Scikit-Learn等库被推荐为数据分析工具,尤其适合零基础学习者。
摘要由CSDN通过智能技术生成

如今是数据爆炸的时代,即便不是程序员或者分析师,也免不了在工作中与数据打交道。比如产品定价、个性化推荐、广告投放、产品设计、留存提升等,都需要从海量数据中提取出有效信息来辅助决策。

因此,数据处理和分析的能力成了一项很加分的技能,并且能大大提高工作效率。

数据分析工具

在数据分析领域中,Excel 占据着重要的地位。这是因为 Excel 普及程度非常高,几乎所有人都会使用它,也方便与他人协作。Excel 本身提供了很多计算、分析和图表展示功能,可以快速完成一些简单的数据处理和分析任务。

但随着数据量越来越大,数据结构越来越复杂,有时单一使用 Excel 处理数据效率较低或者不能完全实现分析者的功能需求。而 Python 作为一门容易上手又功能丰富的编程语言,则可以与 Excel 很好地结合,发挥它们各自的优点,既能利用 Python 的强大数据分析功能,又能使用 Excel 的易用性和数据共享特性,从而更好地完成数据分析任务。

再加上 Python 还能处理很多数据采集、文件整理、自动化测试等任务,所以如果你有数据分析和办公自动化方面的需求,强烈建议直接从 Python 学起,可以更快达到你的目标。

Python 常用模块

Python 有丰富的工具库,其中在数据分析领域常用的是 Numpy、Pandas、Matplotlib、Scikit-Learn 等。

  • Numpy - 提供了数组功能,以及对数据进行快速处理的函数。
  • Pandas - Python中最强大的数据分析库。提供了对于表格形式数据的增、删、查、改功能,并且带有丰富的数据处理函数,还支持数据分析功能。
  • Matplotlib - Python中最常用的一个数据可视化的库,包含很多制作图表的函数。
  • Scikit-Learn - 一个机器学习库,其提供了完善的机器学习工具箱,包括数据预处理、分类、回归、聚类、预测和模型分析等。

AI 加持助力

用 Python 进行数据分析固然方便,但总还是要去记住很多模块和函数,并且经过一定量的持续练习才能融会贯通。这也成为了很多人用 Python 分析数据的门槛。

这一情况在今年突然有了颠覆性的变化,那就是 ChatGPT 的横空出世。以其为代表的一些 AI 大模型已经可以成为你学习编程和开发代码时的有利助手。于是,你只需要对基本的数据分析流程和 Python 语法有所了解,就能在很短的时间内写出复杂的数据分析代码。

如果说,Excel 是为数据分析提供了轮子,那么 Python 就是给轮子加上了发动机,而如今的 AI 更是直接装上了火箭喷射器。有了这三者的结合,对于数据的整理、分析、可视化就不再是件繁琐的事情。掌握了它们,你可以更早下班回家!

新手入门

有人要问了:我现在 Python 都还没整明白,想做数据分析,要从何入手?

读者福利:如果大家对Python感兴趣,这套python学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门Python是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

朋友们如果有需要全套Python入门+进阶学习资源包,可以点击免费领取(如遇扫码问题,可以在评论区留言领取哦)~

👉CSDN大礼包:《python入门&进阶学习资源包》免费分享

Python学习大礼包

在这里插入图片描述

Python入门到精通背记手册

在这里插入图片描述

Python安装包

在这里插入图片描述

Python爬虫秘籍

在这里插入图片描述

Python数据分析全套资源

在这里插入图片描述

Python实现办公自动化全套教程

在这里插入图片描述

Python面试集锦和简历模板

在这里插入图片描述
在这里插入图片描述

Python副业兼职路线

在这里插入图片描述

资料领取

上述这份完整版的Python全套学习资料已经上传CSDN官方,朋友们如果需要可以微信扫描下方CSDN官方认证二维码 即可领取↓↓↓

CSDN大礼包:《python入门&进阶学习资源包》免费分享

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值