报告做了大量的一线实践调研,访谈了超过百位的各界专家,系统归纳解答了综合技术前沿趋势与行业一线实践的一系列共性问题:
1)大模型的核心突破是什么?
2)为什么需要发展行业大模型?
3)行业大模型是什么?
4)哪些行业的大模型应用发展快?
5)哪些场景的大模型应用发展快?
6)不同行业对大模型有没有共性需求?
7)如何衡量行业大模型是否成功?
8)行业大模型有哪些实现方式?
9)行业大模型如何实现负责任的部署和应用?
10)行业大模型的未来发展方向是什么?
本报告目录
2024年5月,腾讯研究院正式发布**《向 AI 而行,共筑新质生产力——行业大模型调研报告》,前后历时近1年研究**,基于对超过百名各界专家访谈(百人百问),深入剖析了行业大模型的发展背景、应用进展、实现方式、安全与治理,以及未来的发展趋势,旨在为业界提供囊括学术、商业、政策等不同视角的全面参考。
《向 AI 而行,共筑新质生产力——行业大模型调研报告》
邬贺铨院士推荐语
1)大模型的核心突破是什么?
大模型的核心突破在于其参数规模巨大、泛化能力强、支持多模态。这使得大模型能够处理复杂任务,具备更强的学习能力,并能够理解和生成多种模态的信息(如文本、图像、语音等)。
代表性语言模型参数量与性能(MMLLU评估结果)对比
2)为什么需要发展行业大模型?
发展行业大模型的原因主要有以下几点:
-
大模型存在“不可能三角”问题:即模型的专业性、泛化性和经济性难以同时兼顾。
-
行业对大模型有内生需求:不同行业拥有特定的知识体系和业务需求,需要专业化的AI模型来满足,保障安全可控是底线要求。
-
行业大模型是落地“人工智能+”的最后一公里:将大模型应用于具体行业,才能真正实现AI技术的价值。
通用大模型与行业大模型对比
3)行业大模型是什么?
利用大模型技术,针对特定数据和任任务进行训练或优化,形成具备专用知识与能力的大模型及应用。它通常包含模型和应用两部分,本质上是解决方案,旨在解决行业特定问题。
通用大模型与行业大模型的关系
4)哪些行业的大模型应用发展快?
发展较快的行业包括:
-
知识密集型行业:如教育、研发、设计等,由于知识密度高,更容易受到大模型的影响。
-
数据积累丰富的行业:如金融、医疗等,拥有大量数据可以用于模型训练和优化。
-
应用场景明确的行业:如媒体、广告等,大模型可以快速应用于内容创作、个性化推荐等场景。
主要行业的大模型应用阶段情况示意图
5)哪些场景的大模型应用发展快?
发展较快的场景呈现“微笑曲线”特征:在产业链高附加价值的两端(研发/设计和营销/服务),大模型应用落地较快;而在低附加价值的中部(生产、组装等),大模型应用进程较慢。
大模型应用场景的微笑曲线:两端快、中间慢
行业大模型典型应用场景调研总结
6)不同行业对大模型有没有共性需求?
不同行业对大模型存在“三大共性需求”
-
一是内容生成与创意设计。
-
二是信息提炼与专业辅助。
-
三是任务调度与智能交互。
7)如何衡量行业大模型是否成功?
衡量行业大模型应用成功的2-3-1原则:避免片面追求技术性能或短期收益的2个误区,应评估降本提效、业务创新和体验增强上的3类价值,并重点构建1个高质量数据飞轮的模式。
衡量行业大模型应用成功的2-3-1原则
8)行业大模型有哪些实现方式?
行业大模型的实现方式主要有以下四种,在机构的具体实践中,通常不会只用一种方式,而会组合使用,以实现最佳效果。
-
提示工程:通过精心设计的提示词引导模型生成目标内容。
-
检索增强生成:结合信息检索技术,提高生成内容的准确性和相关性。
-
精调:在通用大模型的基础上,使用行业数据进行微调,提升模型的专业性。
-
预训练:针对特定行业进行预训练,构建行业专属的大模型。
行业大模型构建方式对比
9)行业大模型如何实现负责任的部署和应用?
实现负责任的行业大模型部署和应用,需要关注以下几个方面:
-
数据安全与隐私保护:确保数据安全,保护用户隐私。
-
模型可解释性与公平性:提高模型的可解释性,避免模型歧视和偏见。
-
伦理与法律规范:遵守相关伦理和法律规范,确保模型应用符合社会价值观。
10)行业大模型的未来发展方向是什么?
在“人工智能+”等重要政策指引下,行业大模型有望加速在传统行业的落地应用,在云智一体的基础设施支持下,向多模态、人工智能体、端侧及小型化等方向发展,更深入嵌入各行业的工作流程中,从而促进生产力的提升。
Acquire this material
获取本报告
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓