由全球著名华人人工智能学者李飞飞联合领导的斯坦福大学以人为本人工智能研究所(Stanford HAI),于近期发布了《2025 年人工智能指数报告》(Artificial Intelligence Index Report 2025)。自2017年首度发布以来,其多维度的评估框架和跨年度的数据追踪,已成为全球学术界和产业界观察AI技术演进的重要参照。Stanford HAI 官方介绍道,“这是我们迄今为止最全面的报告,而且是在人工智能对社会、经济和全球治理的影响全面增强的重要时刻发布的”。
以下是斯坦福大学《2025年人工智能指数报告》的核心观点和结论整理,结合技术、经济、社会和政策等12个维度的综合分析:
1、AI模型性能大幅度提升
2023年新引入的复杂基准测试(如MMMU、GPQA、SWEbench)中,AI模型得分分别提升了18.8%、48.9%和67.3%。
其中,MMMU是指大规模多学科多模态理解与推理基准,GPQA则专注于评估大模型在博士级科学问题上的推理能力和专业知识,SWE-bench指的是软件工程基准测试。SWEbench(软件工程基准)的AI表现提升最大,从2023年的4.4%飙升至2024年的71.7%。
视频生成技术(如OpenAI的SORA)和AI代理在限时编程任务中已超越人类水平。
2、模型成本骤降,模型效能快速提升
对于MMLU测试中达到GPT-3.5水平(64.8%准确率)的模型,单次百万token查询成本从2022年11月的20美元,暴跌至2024年10月的0.07美元(Gemini-1.5-Flash-8B模型),18个月内降幅超280倍。
不同任务的LLM推理价格年降幅达9-900倍不等。
同时,AI硬件成本年均下降30%,能效提升40%,推动技术普惠化。
报告指出,人工智能技术的性能持续提升,开发和部署成本显著下降,人工智能正在迅速从实验室走进千行百业的广泛应用,对人工智能的使用已经攀升到前所未有的水平。麦肯锡对于全球各行业共600多家企业的一份调研显示,2024年,企业中应用至少一项生成式人工智能技术的比例,已经急速攀升至71%,而这一数值在2023年还不到35%。
3、中美技术差距大幅缩小
2024 年,美国机构产生了40 个著名的AI 模型,大大超过了中国的15 个和欧洲的3 个。虽然美国在数量上保持领先地位,但中国型号已迅速缩小质量差距:MMLU 和 HumanEval 等主要基准的性能差异从2023 年的两位数缩小到2024 年的接近持平。与此同时,中国在AI 出版物和专利方面继续处于领先地位。与此同时,模型开发越来越全球化,中东、拉丁美洲和东南亚等地区推出了引人注目的产品。
4、AI日益融入日常生活
2023年,FDA批准了223种AI医疗设备,而2015年仅为6种。
美国最大的运营商之一Waymo,每周提供超过15 万次无人驾驶出行。
而百度的经济型“萝卜快跑”(Apollo Go)自动驾驶出租车车队现在已在中国多个城市提供服务。
5、全球企业/机构的AI贡献度阿里巴巴排名全球第三
报告根据论文引用率、技术领先度、是否规模化使用,将61个模型纳入2024年度全球“重要模型”。其中美国贡献40个,中国贡献15个,美、中两国的“重要模型”占全球总数的90.2%。
从具体机构分布来看,谷歌与OpenAI各占7席并列榜首,阿里巴巴以6个入选模型紧随其后,排名全球第三,中国第一,占全球“重要模型”总量的10%,中国“重要模型”总量的40%。阿里巴巴作为入选“重要模型”最多的中国公司,其入选的六款模型(按发布时间顺序)分别为:Qwen-VL-Max、Qwen1.5-72B、Qwen2-72B、Qwen2.5-32B、Qwen2.5 Instruct (72B)、Qwen2.5-72B,直观展现了阿里通义大模型家族在2024年的飞速进步,是中国AI力量在全球影响力崛起的典型代表。
6、投资与商业化加速
2024年全球AI投资达2523亿美元,美国以1091亿美元领跑(中国93亿美元,差距12倍),生成式AI独占339亿美元。
企业应用普及:78%的组织采用AI技术(2023年为55%),中国AI应用率达75%,接近北美水平。
7、 生产力与行业变革
AI在医疗、金融等领域实现规模化应用:FDA批准的AI医疗设备从2015年的6款增至2023年的223款,AI辅助的蛋白质折叠研究获诺贝尔化学奖。
工业机器人主导:中国2023年安装27.63万台工业机器人,占全球总量的51.1%,远超其他国家总和。
8、AI滥用事件激增
根据AI事件数据库(AI Incidents Database)统计,2024年AI相关危害事件达233起,创历史新高,较2023年暴增56.4%。典型案例包括深度伪造私密影像、涉嫌导致青少年自杀的聊天机器人等。虽非全貌,但问题激增态势令人震惊。
9、全球对AI的乐观情绪正在上升,但地区差异较大
在中国(83%)、印度尼西亚 (80%)和泰国(77%)等国家/地区,绝大多数人认为AI 产品和服务有益于有害。相比之下,加拿大(40%)、美国 (39%)和荷兰(36%)等地的乐观情绪仍然低得多。尽管如此,市场情绪正在发生变化:自2022 年以来,几个之前持怀疑态度的国家的乐观情绪显著增加,包括德国(+10%)、法国(+10%)、加拿大(+8%)、英国 (+8%)和美国(+4%)。
总结
斯坦福报告揭示了AI技术快速迭代与全球竞争的复杂图景:性能趋近但生态差距犹存,成本下降推动普惠化,但监管、伦理和基础研究仍是关键挑战。中国在应用和专利上表现突出,但需警惕“应用强、生态弱”的潜在风险;美国则持续领跑创新与投资,开源技术正在重塑行业格局。未来,AI的可持续发展需平衡技术突破、社会信任和全球协作。
那么,如何系统的去学习大模型LLM?
作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
👉①.基础篇👈
基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
👉②.进阶篇👈
接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
👉③.实战篇👈
实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
👉④.福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!