NO.1 01背包问题
题目:
有 N 件物品和一个容量是 V的背包。每件物品只能使用一次。
第 i 件物品的体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。
接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 件物品的体积和价值。
输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤1000,0<vi,wi≤1000
输入样例
4 5
1 2
2 4
3 4
4 5
输出样例:
8
代码:(体积逆序)
#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<string.h>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<stack>
#include<map>
#include<unordered_map>
using namespace std;
typedef pair<int,int> PII;
const int N = 1e3 + 10;
int x,y;
int v[N],w[N];
int dp[int(1e3 + 10)];
int main(){
cin >> x >> y;
for(int i = 1;i <= x;i ++){
cin >> v[i] >> w[i];
}
int ans = 0;
for(int i = 1;i <= x;i ++){
for(int j = y;j >= v[i];j --){
dp[j] = max(dp[j],dp[j-v[i]]+w[i]);
//ans = max(ans,dp[j]);
}
}
for(int i = 0;i <= y;i ++){
ans = max(ans,dp[i]);
}
cout << ans << endl;
return 0;
}
NO.2 完全背包问题
题目
有 N 种物品和一个容量是 V的背包,每种物品都有无限件可用。
第 i 种物品的体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。
接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 种物品的体积和价值。
输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤1000,0<vi,wi≤1000
输入样例
4 5
1 2
2 4
3 4
4 5
输出样例:
10
代码:(体积正序)
#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<string.h>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<stack>
#include<map>
#include<unordered_map>
using namespace std;
typedef pair<int,int> PII;
const int N = 1e3 + 10;
int x,y;
int v[N],w[N],dp[N];
int main(){
cin >> x >> y;
for(int i = 1;i <= x;i ++)
cin >> v[i] >> w[i];
int ans = 0;
for(int i = 1;i <= x;i ++){
for(int j = v[i];j <= y;j ++){
dp[j] = max(dp[j],dp[j-v[i]]+w[i]);
ans = max(ans,dp[j]);
}
}
cout << ans << endl;
return 0;
}
NO.3 多重背包问题1
题目
有 N 种物品和一个容量是 V 的背包。
第 i 种物品最多有 si 件,每件体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。
输出最大价值。
输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。
接下来有 N 行,每行三个整数 vi,wi,si,用空格隔开,分别表示第 i 种物品的体积、价值和数量。
输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤100 , 0<vi,wi,si≤100
输入样例
4 5
1 2 3
2 4 1
3 4 3
4 5 2
输出样例:
10
代码:(体积正序)
#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<string.h>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<stack>
#include<map>
#include<unordered_map>
using namespace std;
typedef pair<int,int> PII;
const int N = 1e2 + 10;
int x,y;
int v[N],w[N],s[N];
int dp[N][N];
int main(){
cin >> x >> y;
for(int i = 1;i <= x;i ++)
cin >> v[i] >> w[i] >> s[i];
for(int i = 1;i <= x;i ++){
for(int j = 0;j <= y;j ++){
for(int k = 0;k <= s[i] && k*v[i] <= j ;k ++){
dp[i][j] = max(dp[i][j],dp[i-1][j-k*v[i]]+k*w[i]);
}
}
}
cout << dp[x][y] << endl;
return 0;
}
NO.4 多重背包问题2(二进制优化)
题目:
有 N 种物品和一个容量是 V 的背包。
第 i 种物品最多有 si 件,每件体积是 vi,价值是 wi 。
求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。
输出最大价值。输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。
接下来有 N 行,每行三个整数 vi,wi,si,用空格隔开,分别表示第 i 种物品的体积、价值和数量。
输出格式
输出一个整数,表示最大价值。
数据范围
0<N≤1000 ,0<V≤2000 ,0<vi,wi,si≤2000
提示:
本题考查多重背包的二进制优化方法。
输入样例
4 5
1 2 3
2 4 1
3 4 3
4 5 2
输出样例:
10
代码:(体积逆序)
#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<string.h>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<stack>
#include<map>
#include<unordered_map>
using namespace std;
typedef pair<int,int> PII;
const int N = 2e4 + 10;
int x,y;
int v[N],w[N],s[N];
int dp[N];
int main(){
cin >> x >> y;
int cnt = 0;
for(int i = 1;i <= x;i ++){
int k = 1;
int N,W,S;
cin >> N >> W >> S;
while(k <= S){
v[cnt] = N * k;
w[cnt ++] = W * k;
S -= k;
k *= 2;
}
if(S > 0){
v[cnt] = N * S;
w[cnt ++] = W * S;
}
}
for(int i = 0;i < cnt;i ++){
for(int j = y;j >= v[i];j --)
dp[j] = max(dp[j],dp[j-v[i]] + w[i]);
}
cout << dp[y] << endl;
return 0;
}
NO.5 分组背包问题
有 N 组物品和一个容量是 V 的背包。
每组物品有若干个,同一组内的物品最多只能选一个。
每件物品的体积是 vij,价值是 wij,其中 i 是组号,j 是组内编号。
求解将哪些物品装入背包,可使物品总体积不超过背包容量,且总价值最大。
输出最大价值。
输入格式
第一行有两个整数 N,V ,用空格隔开,分别表示物品组数和背包容量。
接下来有 N组数据:
- 每组数据第一行有一个整数 Si,表示第 i个物品组的物品数量;
- 每组数据接下来有 Si 行,每行有两个整数 vij,wij,用空格隔开,分别表示第 i 个物品组的第 j个物品的体积和价值;
数据范围
0<N,V≤100,0<Si≤100,0 < vij,wij ≤ 100
输入样例
3 5
2
1 2
2 4
1
3 4
1
4 5
输出样例:
8
代码:(体积逆序)
#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<string.h>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<stack>
#include<map>
#include<unordered_map>
using namespace std;
typedef pair<int,int> PII;
const int N = 1e2 + 10;
int x,y;
int s[N];
int v[N][N],w[N][N],dp[N];
int main(){
cin >> x >> y;
for(int i = 1;i <= x;i ++){
cin >> s[i];
for(int j = 0;j < s[i];j ++)
cin >> v[i][j] >> w[i][j];
}
for(int i = 1;i <= x;i ++)
for(int j = y;j >= 0;j --)//体积
for(int k = 0;k < s[i];k ++)
if(v[i][k] <= j)
dp[j] = max(dp[j],dp[j-v[i][k]]+w[i][k]);
cout << dp[y] << endl;
return 0;
}