算法-动态规划(背包)

NO.1 01背包问题

题目:

有 N 件物品和一个容量是 V的背包。每件物品只能使用一次。

第 i 件物品的体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式

第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。

接下来有 N  行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 件物品的体积和价值。

输出格式

输出一个整数,表示最大价值。

数据范围

0<N,V≤1000,0<vi,wi≤1000

输入样例
4 5
1 2
2 4
3 4
4 5
输出样例:
8

代码:(体积逆序

#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<string.h>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<stack>
#include<map>
#include<unordered_map>
using namespace std;
typedef pair<int,int> PII;
const int N = 1e3 + 10;
int x,y;
int v[N],w[N];
int dp[int(1e3 + 10)];
int main(){
	cin >> x >> y;
	for(int i = 1;i <= x;i ++){
		cin >> v[i] >> w[i];
	}
	int ans = 0;
	for(int i = 1;i <= x;i ++){
		for(int j = y;j >= v[i];j --){
			dp[j] = max(dp[j],dp[j-v[i]]+w[i]);
			//ans = max(ans,dp[j]);
		}	
	}
	for(int i = 0;i <= y;i ++){
		ans = max(ans,dp[i]);
	}
	cout << ans << endl;
	return 0;
}

NO.2 完全背包问题

题目

有 N 种物品和一个容量是 V的背包,每种物品都有无限件可用。

第 i 种物品的体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式

第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。

接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 种物品的体积和价值。

输出格式

输出一个整数,表示最大价值。

数据范围

0<N,V≤1000,0<vi,wi≤1000

输入样例
4 5
1 2
2 4
3 4
4 5
输出样例:
10

代码:(体积正序) 

#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<string.h>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<stack>
#include<map>
#include<unordered_map>
using namespace std;
typedef pair<int,int> PII;
const int N = 1e3 + 10;
int x,y;
int v[N],w[N],dp[N];
int main(){
	cin >> x >> y;
	for(int i = 1;i <= x;i ++)
		cin >> v[i] >> w[i];
	int ans = 0;
	for(int i = 1;i <= x;i ++){
		for(int j = v[i];j <= y;j ++){
			dp[j] = max(dp[j],dp[j-v[i]]+w[i]);
			ans = max(ans,dp[j]);
		}
	}
	
	cout << ans << endl;
	return 0;
}

 NO.3 多重背包问题1

题目

有 N 种物品和一个容量是 V 的背包。

第 i 种物品最多有 si 件,每件体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。
输出最大价值。

输入格式

第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。

接下来有 N 行,每行三个整数 vi,wi,si,用空格隔开,分别表示第 i 种物品的体积、价值和数量。

输出格式

输出一个整数,表示最大价值。

数据范围

0<N,V≤100 , 0<vi,wi,si≤100

输入样例
4 5
1 2 3
2 4 1
3 4 3
4 5 2
输出样例:
10

代码:(体积正序

#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<string.h>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<stack>
#include<map>
#include<unordered_map>
using namespace std;
typedef pair<int,int> PII;
const int N = 1e2 + 10;
int x,y;
int v[N],w[N],s[N];
int dp[N][N];
int main(){
	cin >> x >> y;
	for(int i = 1;i <= x;i ++)
		cin >> v[i] >> w[i] >> s[i];
	for(int i = 1;i <= x;i ++){
		for(int j = 0;j <= y;j ++){
			for(int k = 0;k <= s[i] && k*v[i] <= j ;k ++){
				dp[i][j] = max(dp[i][j],dp[i-1][j-k*v[i]]+k*w[i]);
			}
		}
	}
	cout << dp[x][y] << endl;
	return 0;
}

 NO.4 多重背包问题2(二进制优化)

题目:

有 N 种物品和一个容量是 V 的背包。

第 i 种物品最多有 si 件,每件体积是 vi,价值是 wi 。

求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。
输出最大价值。

输入格式

第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。

接下来有 N 行,每行三个整数 vi,wi,si,用空格隔开,分别表示第 i 种物品的体积、价值和数量。

输出格式

输出一个整数,表示最大价值。

数据范围

0<N≤1000 ,0<V≤2000 ,0<vi,wi,si≤2000

提示:

本题考查多重背包的二进制优化方法。

输入样例
4 5
1 2 3
2 4 1
3 4 3
4 5 2
输出样例:
10

代码:(体积逆序

#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<string.h>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<stack>
#include<map>
#include<unordered_map>
using namespace std;
typedef pair<int,int> PII;
const int N = 2e4 + 10;
int x,y;
int v[N],w[N],s[N];
int dp[N];
int main(){
	cin >> x >> y;
	int cnt = 0;
	for(int i = 1;i <= x;i ++){
		int k = 1;
		int N,W,S;
		cin >> N >> W >> S;
		while(k <= S){
			v[cnt] = N * k;
			w[cnt ++] = W * k;
			S -= k;
			k *= 2;
		}
		if(S > 0){
			v[cnt] = N * S;
			w[cnt ++] = W * S;
		}
	}
	for(int i = 0;i < cnt;i ++){
		for(int j = y;j >= v[i];j --)
			dp[j] = max(dp[j],dp[j-v[i]] + w[i]); 
	}
	cout << dp[y] << endl;
	return 0;
}

NO.5  分组背包问题

有 N 组物品和一个容量是 V 的背包。

每组物品有若干个,同一组内的物品最多只能选一个。
每件物品的体积是 vij,价值是 wij,其中 i 是组号,j 是组内编号。

求解将哪些物品装入背包,可使物品总体积不超过背包容量,且总价值最大。

输出最大价值。

输入格式

第一行有两个整数 N,V ,用空格隔开,分别表示物品组数和背包容量。

接下来有 N组数据:

  • 每组数据第一行有一个整数 Si,表示第 i个物品组的物品数量;
  • 每组数据接下来有 Si 行,每行有两个整数 vij,wij,用空格隔开,分别表示第 i 个物品组的第 j个物品的体积和价值;
数据范围

0<N,V≤100,0<Si≤100,0 < vij,wij ≤ 100

输入样例
3 5
2
1 2
2 4
1
3 4
1
4 5
输出样例:
8

 代码:(体积逆序

#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<string.h>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<stack>
#include<map>
#include<unordered_map>
using namespace std;
typedef pair<int,int> PII;
const int N = 1e2 + 10;
int x,y;
int s[N];
int v[N][N],w[N][N],dp[N];
int main(){
	cin >> x >> y;
	for(int i = 1;i <= x;i ++){
		cin >> s[i];
		for(int j = 0;j < s[i];j ++)
			cin >> v[i][j] >> w[i][j];
	}
	for(int i = 1;i <= x;i ++)
		for(int j = y;j >= 0;j --)//体积
			for(int k = 0;k < s[i];k ++)
				if(v[i][k] <= j)
					dp[j] = max(dp[j],dp[j-v[i][k]]+w[i][k]);
	cout << dp[y] << endl;
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值