【期末考试复习】概率论与数理统计(知识点模式 - 复习题2)

题目:

设随机变量 X X X 的概率密度函数为 f ( x ) = a + b x f(x) = a + bx f(x)=a+bx,其中 0 < x ≤ 1 0 < x \leq 1 0<x1 f ( x ) = 0 f(x) = 0 f(x)=0,在其他情况下。已知 P ( X ≤ 1 / 2 ) = 3 / 8 P(X \leq 1/2) = 3/8 P(X1/2)=3/8,求 a a a b b b

涉及知识点:

  1. 概率密度函数(PDF):概率密度函数 f ( x ) f(x) f(x) 用于描述连续随机变量的概率分布,满足 ∫ − ∞ ∞ f ( x )   d x = 1 \int_{-\infty}^{\infty} f(x) \, dx = 1 f(x)dx=1
  2. 累积分布函数(CDF):累积分布函数 F ( x ) F(x) F(x) 是 PDF 的积分,表示随机变量 X X X 小于或等于某个值 x x x 的概率,即 F ( x ) = ∫ − ∞ x f ( t )   d t F(x) = \int_{-\infty}^{x} f(t) \, dt F(x)=xf(t)dt
  3. 条件概率:利用已知条件计算随机变量的参数。

题目解答:

  1. 确定 a a a b b b 的条件

    • 概率密度函数 f ( x ) f(x) f(x) 0 < x ≤ 1 0 < x \leq 1 0<x1 内有效,因此:
      ∫ 0 1 f ( x )   d x = 1 \int_0^1 f(x) \, dx = 1 01f(x)dx=1
      即:
      ∫ 0 1 ( a + b x )   d x = 1 \int_0^1 (a + bx) \, dx = 1 01(a+bx)dx=1
  2. 计算累积分布函数 F ( x ) F(x) F(x)

    • f ( x ) = a + b x f(x) = a + bx f(x)=a+bx 进行积分得到 F ( x ) F(x) F(x),并利用已知条件 P ( X ≤ 1 / 2 ) = 3 / 8 P(X \leq 1/2) = 3/8 P(X1/2)=3/8
      F ( x ) = ∫ 0 x ( a + b x )   d x = a x + b x 2 2 F(x) = \int_0^x (a + bx) \, dx = ax + \frac{bx^2}{2} F(x)=0x(a+bx)dx=ax+2bx2
      代入 x = 1 / 2 x = 1/2 x=1/2
      F ( 1 2 ) = a ⋅ 1 2 + b ( 1 2 ) 2 2 = a 2 + b 8 = 3 8 F\left(\frac{1}{2}\right) = a \cdot \frac{1}{2} + \frac{b \left(\frac{1}{2}\right)^2}{2} = \frac{a}{2} + \frac{b}{8} = \frac{3}{8} F(21)=a21+2b(21)2=2a+8b=83
  3. 方程组求解 a a a b b b

    • 利用归一化条件:
      ∫ 0 1 ( a + b x )   d x = [ a x + b x 2 2 ] 0 1 = a + b 2 = 1 \int_0^1 (a + bx) \, dx = \left[ ax + \frac{bx^2}{2} \right]_0^1 = a + \frac{b}{2} = 1 01(a+bx)dx=[ax+2bx2]01=a+2b=1

    • 利用 P ( X ≤ 1 / 2 ) = 3 / 8 P(X \leq 1/2) = 3/8 P(X1/2)=3/8
      a 2 + b 8 = 3 8 \frac{a}{2} + \frac{b}{8} = \frac{3}{8} 2a+8b=83

  4. 解方程组

    • 第一个方程:
      a + b 2 = 1 a + \frac{b}{2} = 1 a+2b=1

    • 第二个方程:
      a 2 + b 8 = 3 8 \frac{a}{2} + \frac{b}{8} = \frac{3}{8} 2a+8b=83

    • 消去 b b b 求解 a a a
      a 2 + b 8 = 3 8 ⇒ 4 a + b = 3 \frac{a}{2} + \frac{b}{8} = \frac{3}{8} \quad \Rightarrow \quad 4a + b = 3 2a+8b=834a+b=3
      b = 2 − 2 a b = 2 - 2a b=22a 代入:
      4 a + ( 2 − 2 a ) = 3 ⇒ 4 a + 2 − 2 a = 3 ⇒ 2 a = 1 ⇒ a = 1 2 4a + (2 - 2a) = 3 \quad \Rightarrow \quad 4a + 2 - 2a = 3 \quad \Rightarrow \quad 2a = 1 \quad \Rightarrow \quad a = \frac{1}{2} 4a+(22a)=34a+22a=32a=1a=21

    • 再求 b b b
      b = 2 − 2 a = 2 − 2 ⋅ 1 2 = 1 b = 2 - 2a = 2 - 2 \cdot \frac{1}{2} = 1 b=22a=2221=1

结果:

a = 1 2 , b = 1 a = \frac{1}{2}, \quad b = 1 a=21,b=1


无偏估计量

定义:如果统计量 θ ^ \hat{\theta} θ^ 的期望值等于参数 θ \theta θ,即 E ( θ ^ ) = θ E(\hat{\theta}) = \theta E(θ^)=θ,则称 θ ^ \hat{\theta} θ^ 为参数 θ \theta θ 的无偏估计量。

意义:无偏估计量的期望值与真实参数值相等,这意味着在重复抽样的长期平均中,估计量不会系统性地偏离真实参数。

例子:对于正态分布 X ∼ N ( μ , σ 2 ) X \sim N(\mu, \sigma^2) XN(μ,σ2),样本均值 X ˉ = 1 n ∑ i = 1 n X i \bar{X} = \frac{1}{n} \sum_{i=1}^n X_i Xˉ=n1i=1nXi μ \mu μ 的无偏估计量,因为 E ( X ˉ ) = μ E(\bar{X}) = \mu E(Xˉ)=μ

最有效估计量

定义:在所有无偏估计量中,方差最小的估计量称为最有效估计量或最小方差无偏估计量(MVUE,Minimum Variance Unbiased Estimator)。

意义:最有效估计量在保证无偏的前提下,具有最小的估计误差(方差),因此在估计准确性方面是最优的。

例子:对于正态分布 X ∼ N ( μ , σ 2 ) X \sim N(\mu, \sigma^2) XN(μ,σ2),样本均值 X ˉ \bar{X} Xˉ 不仅是 μ \mu μ 的无偏估计量,而且由于它的方差最小(方差为 σ 2 n \frac{\sigma^2}{n} nσ2),所以 X ˉ \bar{X} Xˉ μ \mu μ 的最有效估计量。

详细解释和联系

  1. 无偏性:一个估计量的无偏性保证了它的期望值等于被估计的参数值,从长期来看,这个估计量不会系统性地高估或低估参数。这是一个估计量的基本要求,但无偏性并不保证估计的效率。

  2. 方差:方差衡量了估计量的波动性。方差越小,估计量越集中在真实值附近,即估计越精确。

  3. 最小方差无偏估计量(MVUE):在所有无偏估计量中,最小方差无偏估计量是最优的,因为它在保证无偏性的前提下,具有最小的波动性。

实际应用中的步骤

  1. 验证无偏性:首先检查一个估计量是否是无偏的,即验证 E ( θ ^ ) = θ E(\hat{\theta}) = \theta E(θ^)=θ
  2. 比较方差:在所有无偏估计量中,计算它们的方差,找出方差最小的那个。
  3. 确定最有效估计量:最小方差的无偏估计量即为最有效估计量。

题目:

X X X 服从自由度为 n n n t t t 分布,则 X 2 X^2 X2 服从自由度为 什么的的 F F F 分布。

涉及知识点:

  1. t t t 分布:用于小样本量或总体方差未知情况下的均值比较。
  2. F F F 分布:用于比较两个样本方差是否显著不同,尤其在方差分析(ANOVA)中广泛应用。

题目解答:

t t t 分布与 F F F 分布的关系

如果随机变量 X ∼ t ( n ) X \sim t(n) Xt(n),则 X 2 X^2 X2 服从自由度为 ( 1 , n ) (1, n) (1,n) F F F 分布。详细推导如下:

  1. t t t 分布定义

    如果 X ∼ t ( n ) X \sim t(n) Xt(n),则 X X X 可表示为:
    X = Z W n X = \frac{Z}{\sqrt{\frac{W}{n}}} X=nW Z

    其中:

    • Z ∼ N ( 0 , 1 ) Z \sim N(0,1) ZN(0,1) 是标准正态分布。
    • W ∼ χ 2 ( n ) W \sim \chi^2(n) Wχ2(n) 是自由度为 n n n 的卡方分布。
  2. 平方 t t t 分布变量

    X X X 平方得到 X 2 X^2 X2
    X 2 = ( Z W n ) 2 = Z 2 W n = Z 2 W / n X^2 = \left( \frac{Z}{\sqrt{\frac{W}{n}}} \right)^2 = \frac{Z^2}{\frac{W}{n}} = \frac{Z^2}{W/n} X2= nW Z 2=nWZ2=W/nZ2

  3. 转化为 F F F 分布

    • Z 2 ∼ χ 2 ( 1 ) Z^2 \sim \chi^2(1) Z2χ2(1),因为 Z Z Z 是标准正态分布(一个标准正态分布)。
    • W ∼ χ 2 ( n ) W \sim \chi^2(n) Wχ2(n)
    • 因此, X 2 X^2 X2 服从自由度为 ( 1 , n ) (1, n) (1,n) F F F 分布。

综上所述,如果 X ∼ t ( n ) X \sim t(n) Xt(n),则 X 2 X^2 X2 服从自由度为 ( 1 , n ) (1, n) (1,n) F F F 分布。

相关知识点补充

  • t t t 分布:适用于小样本量或总体方差未知情况下的均值比较,其概率密度函数为:
    f ( t ) = Γ ( n + 1 2 ) n π   Γ ( n 2 ) ( 1 + t 2 n ) − n + 1 2 f(t) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi} \, \Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{t^2}{n}\right)^{-\frac{n+1}{2}} f(t)= Γ(2n)Γ(2n+1)(1+nt2)2n+1
    其中 Γ \Gamma Γ 是伽玛函数, n n n 是自由度。

  • F F F 分布:用于比较两个样本方差是否显著不同,其概率密度函数为:
    f ( F ) = ( n 1 n 2 ) n 1 / 2 ( F n 1 n 2 ) n 1 2 − 1 B ( n 1 2 , n 2 2 ) ( 1 + n 1 n 2 F ) n 1 + n 2 2 f(F) = \frac{\left(\frac{n_1}{n_2}\right)^{n_1/2} \left(\frac{F}{\frac{n_1}{n_2}}\right)^{\frac{n_1}{2} - 1}}{B\left(\frac{n_1}{2}, \frac{n_2}{2}\right) \left(1 + \frac{n_1}{n_2} F\right)^{\frac{n_1+n_2}{2}}} f(F)=B(2n1,2n2)(1+n2n1F)2n1+n2(n2n1)n1/2(n2n1F)2n11
    其中 B B B 是贝塔函数,自由度分别为 n 1 n_1 n1 n 2 n_2 n2


END

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_千思_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值