LPP(Locality Preserving Projection)在Mathlab中代码实现

这篇博客介绍了Locality Preserving Projection (LPP)在Matlab中的实现,并通过一个例子帮助理解W、D和L矩阵的作用。文章引用了GitHub上的代码资源,虽然原代码在有监督学习场景下求解W矩阵存在一些问题,但经过调整后,其降维效果可媲美LDA,同时避免了逆矩阵和条件数大的问题。作者探讨了LPP在故障诊断中的应用疑惑,对比了PCA、ICA与LPP、LDA在有监督降维中的差异,并表达了对降维结合分类流程的困惑。博客旨在为无法访问CSDN会员资源的读者提供帮助。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LPP(Locality Preserving Projection),局部保留投影. - oimz - 博客园

这是一个例子 可以帮助很好理解 W D 和 L 矩阵是什么东西

LPP/LPP_lqd at master · LouQiongdan/LPP · GitHub

这是Github 上LDQ 同学的代码。因为是有监督学习,他求解W矩阵稍微有点问题,但改过后运行效果像LDA 一样非常不错,且没有逆矩阵,条件数很大这些问题。只是只能降到2维,后面的信息量很少。

我有点不理解后面故障诊断,有监督算法怎么应用于故障分类,来分类错误数据。难道错误数据身上有标签,我是有毛病的,别把我分到正常组。PCA ICA没有LDA 和LPP 降维效果好,也很正常啊。有监督方法都知道数据类别标签了,还分错,那不很拉垮吗。

可能我还不明白降维+分类在故障诊断中的具体流程,所以很困惑,我在=再看看。

想在CSDN上找非会员代码的,没找到。找到了跟各位一样买不起会员的同学分享一下。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值