【C语言】计算中缀表达式 算法+全代码实现

算法

先将中缀表达式转为后缀表达式:

【C语言】用顺序栈实现中缀表达式转后缀表达式 算法+全代码实现

再计算后缀表达式:

  • 从左到右依次扫描表达式的各元素
  • 若是操作数,直接入栈
  • 若是运算符,弹出两个栈顶元素进行相应运算,运算结果再入栈(先出栈的操作数在运算符右边)

可以将两部分同时进行,创建运算符栈和操作数栈,边转边计算,运算符出栈时直接在操作数栈进行计算

由于上篇文章写了中缀转后缀,这里就直接计算后缀,两部分分开进行。操作数栈(用来计算后缀表达式的栈)的基本操作跟运算符栈(用来中缀转后缀)是一样的,只需改个数据类型

后缀表达式的操作数只能为0-9整数~

计算后缀表达式代码

typedef struct {
	float data[Max];
	int top;
}Sqstack_cal;

//初始化栈_calculator
void Initstack_cal(Sqstack_cal* s) {
	s->top = -1;
}

//入栈_计算后缀表达式
bool Push_cal(Sqstack_cal* s, float x) {
	bool ret = false;
	if (s->top != Max - 1) {
		s->data[++s->top] = x;
		ret = true;
	}
	return ret;
}

//出栈_calculator
float Pop_cal(Sqstack_cal* s) {
	float x = 0;
	if (s->top != -1)
		x = s->data[s->top--];
	return x;
}

//读栈顶元素_calculator
float Top_cal(Sqstack_cal s) {
	return s.data[s.top];
}

//char转floaat(0-9)
float charTofloat(char a) {
	int ret = 0;
	if (a >= '0' && a <= '9')
		ret = a - '0';
	return (float)ret;
}

//计算后缀表达式(操作数为0-9整数)
float Calculator_end(Sqstack s) {
	Sqstack_cal n;
	Initstack_cal(&n);
	for (int i = 0; i <= s.top; i++) {
		if (s.data[i] >= '0' && s.data[i] <= '9') {
			Push_cal(&n, charTofloat(s.data[i]));
		}
		else if (s.data[i] == '+' || s.data[i] == '-' || s.data[i] == '*' || s.data[i] == '/') {
			float x = Pop_cal(&n);
			switch (s.data[i]) {
			case '+':
				Push_cal(&n, Pop_cal(&n) + x);
				break;
			case '-':
				Push_cal(&n, Pop_cal(&n) - x);
				break;
			case '*':
				Push_cal(&n, Pop_cal(&n) * x);
				break;
			case '/':
				Push_cal(&n, Pop_cal(&n) / x);
				break;
			}
		}
	}
	return Top_cal(n);
}

全代码

#define _CRT_SECURE_NO_WARNINGS
#include <stdio.h>
#include <stdbool.h>

#define Max 100

typedef struct {
	char data[Max];
	int top;
}Sqstack;

typedef struct {
	float data[Max];
	int top;
}Sqstack_cal;

//初始化栈
void Initstack(Sqstack* s) {
	s->top = -1;
}

//判空 空返回1
bool IsEmpty(Sqstack s) {
	int ret = false;
	if (s.top == -1)
		ret = true;
	return ret;
}

//入栈
bool Push(Sqstack* s, char x) {
	int ret = false;
	if (s->top != Max - 1) {
		s->data[++s->top] = x;
		ret = true;
	}
	return ret;
}

//出栈
char Pop(Sqstack* s) {
	char x = '0';
	if (s->top != -1)
		x = s->data[s->top--];
	return x;
}

//读栈顶元素
char Top(Sqstack s) {
	return s.data[s.top];
}

//优先级比较 a高于或等于b返回true
bool compare(char a, char b) {
	bool ret = false;
	if ((a == '+' || a == '-') && (b == '+' || b == '-'))
		ret = true;
	else if ((a == '*' || a == '/') && (b == '*' || b == '/'))
		ret = true;
	else if ((a == '*' || a == '/') && (b == '+' || b == '-'))
		ret = true;
	return ret;
}

//输入中缀表达式
void Input(char arr[]) {
	printf("请输入中缀表达式:\n");
	gets_s(arr, Max);
}

//中缀转后缀
void change(char arr[], Sqstack* s) {
	Sqstack op;
	Initstack(&op);
	int i = 0;
	while (arr[i] != '\0') {	//依次扫描中缀表达式
		if (arr[i] == '+' || arr[i] == '-' || arr[i] == '*' || arr[i] == '/') {
			while (!(Top(op) == '(' || IsEmpty(op))) {	//栈顶元素不是( 或栈非空
				if (compare(Top(op), arr[i])) {		//若栈顶元素的优先级高于或等于当前运算符
					Push(s, Pop(&op));				//栈顶元素出栈并加入后缀表达式
				}
				else    break;		//若栈顶元素的优先级低于当前运算符,直接退出循环
			}
			Push(&op, arr[i]);	//当前运算符入栈
		}
		else if (arr[i] == '(')
			Push(&op, arr[i]);
		else if (arr[i] == ')') {
			while (Top(op) != '(') {
				Push(s, Pop(&op));
			}
			Pop(&op);
		}
		else    Push(s, arr[i]);
		i++;
	}
	while (!IsEmpty(op)) {	//若栈中有剩余则全部弹出
		Push(s, Pop(&op));
	}
}

//输出后缀表达式
void Output(Sqstack s) {
	for (int i = 0; i <= s.top; i++) {
		printf("%c", s.data[i]);
	}
	printf("\n");
}


//初始化栈_calculator
void Initstack_cal(Sqstack_cal* s) {
	s->top = -1;
}

//入栈_计算后缀表达式
bool Push_cal(Sqstack_cal* s, float x) {
	bool ret = false;
	if (s->top != Max - 1) {
		s->data[++s->top] = x;
		ret = true;
	}
	return ret;
}

//出栈_calculator
float Pop_cal(Sqstack_cal* s) {
	float x = 0;
	if (s->top != -1)
		x = s->data[s->top--];
	return x;
}

//读栈顶元素_calculator
float Top_cal(Sqstack_cal s) {
	return s.data[s.top];
}

//char转floaat(0-9)
float charTofloat(char a) {
	int ret = 0;
	if (a >= '0' && a <= '9')
		ret = a - '0';
	return (float)ret;
}

//计算后缀表达式(操作数为0-9整数)
float Calculator_end(Sqstack s) {
	Sqstack_cal n;
	Initstack_cal(&n);
	for (int i = 0; i <= s.top; i++) {
		if (s.data[i] >= '0' && s.data[i] <= '9') {
			Push_cal(&n, charTofloat(s.data[i]));
		}
		else if (s.data[i] == '+' || s.data[i] == '-' || s.data[i] == '*' || s.data[i] == '/') {
			float x = Pop_cal(&n);
			switch (s.data[i]) {
			case '+':
				Push_cal(&n, Pop_cal(&n) + x);
				break;
			case '-':
				Push_cal(&n, Pop_cal(&n) - x);
				break;
			case '*':
				Push_cal(&n, Pop_cal(&n) * x);
				break;
			case '/':
				Push_cal(&n, Pop_cal(&n) / x);
				break;
			}
		}
	}
	return Top_cal(n);
}

int main() {
	char arr[Max];
	Input(arr);
	Sqstack s;
	Initstack(&s);
	change(arr, &s);
	Output(s);
	printf("%f", Calculator_end(s));

	return 0;
}

运行截图

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值