
YOLOv10 介绍
YOLO(You Only Look Once)是一种流行的实时目标检测算法,由Joseph Redmon等人在2015年首次提出。它的核心思想是将目标检测任务看作一个单一的回归问题,通过一次前向传播即可预测出图片中的目标类别和位置。YOLO算法以其速度快、性能好而受到广泛关注,并且已经发展出了多个版本。
YOLOv10是由清华大学研究团队开发的最新一代实时端到端目标检测模型。它在YOLO系列模型的基础上,通过引入一致的双重标签分配策略和全面效率-准确性驱动的模型设计,显著提升了检测性能和效率。YOLOv10采用轻量级分类头、空间-通道解耦下采样、基于秩引导的块设计、大核心卷积和部分自注意力模块等创新技术,减少了计算冗余,优化了模型结构,在保持高精度的同时大幅降低了推理延迟,实现了在各种模型规模下的业界领先性能。
论文链接:https://arxiv.org/pdf/2405.14458
项目链接:https://github.com/THU-MIG/yolov10
YOLOv10:实时端到端目标检测
摘要: 在过去的几年中,由于YOLO在计算成本和检测性能之间实现了有效平衡,因此在实时目标检测领域成为了主要的范式。研究者们探索了YOLO的架构设计、优化目标、数据增强策略等,取得了显著的进展。然而,YOLO对非极大值抑制(NMS)的依赖限制了其端到端部署,并对其推理延迟产生了负面影响。此外,YOLO的各个组件设计缺乏全面和深入的检查,导致明显的计算冗余,限制了模型的潜力。这导致了次优的效率,并且有很大的性能提升空间。在这项工作中,我们旨在从后处理和模型架构两个方面进一步推进YOLO的性能-效率边界。
引言: 实时目标检测一直是计算机视觉领域的研究重点,其目标是在低延迟下准确预测图像中对象的类别和位置。YOLO系列因其在性能和效率之间出色的平衡而越来越受欢迎。YOLO的检测流程包括模型前向传播过程和NMS后处理。然而,这两个过程仍有不足之处,导致准确率和延迟之间的次优边界。
相关工作: 实时目标检测旨在在低延迟下对对象进行分类和定位,这对于现实世界的应用至关重要。在过去的几年中,大量工作都集中在开发高效的检测器上。特别是YOLO系列以其主流地位脱颖而出。YOLOv1、YOLOv2和YOLOv3确定了由三部分组成的典型检测架构,即主干网络、颈部网络和头部网络。YOLOv4和YOLOv5引入了CSPNet设计来替代DarkNet,并结合了数据增强策略、增强的PAN和更多的模型尺寸等。YOLOv6提出了BiC和SimCSPSPPF分别用于颈部和主干网络,以及辅助训练和自蒸馏策略。YOLOv7引入了E-ELAN以获得丰富的梯度流路径,并探索了几种可训练的bag-of-freebies方法。YOLOv8提出了C2f构建块,用于有效的特征提取和融合。Gold-YOLO提供了先进的GD机制来增强多尺度特征融合能力。YOLOv9提出了GELAN来改善架构,并使用PG