题目:
某条街被划为 n 条路段,这 n 条路段依次编号为1…n1\dots n1…n。每个路段最多可以种一棵树。现在居民们给出了 h 组建议,每组建议包含三个整数 b,e,t,表示居民希望在路段 b 到 e 之间至少要种t棵树。这些建议所给路段的区间可以交叉。请问:如果要满足所有居民的建议,至少要种多少棵树。
输入:
第一行为n,表示路段数。
第二行为h,表示建议数。
下面 h 行描述一条建议:b,e,t,用一个空格分隔。
输出:
输出只有一个数,为满足所有居民的建议,所需要种树的最少数量。
分析:
尽量在建议区间的交叉处种树,那么种树的数量是最少的。
先把建议区间按照end从小到大排序,然后从第一个依次从e往b的方向种t 棵树,则就满足了尽量在区间的交叉处种树,这样在下一个建议时就能最大程度上利用上一个建议的种树棵数。
代码如下(c++)
#include<bits/stdc++.h>
using namespace std;
struct tree{
int b,e,t;
}tr[6000];
int shu[40000];//用来记录是否在这个地方种了树
bool cmp(tree x,tree y){
return x.e<y.e;
}
int main()
{
int n,advice;cin>>n>>advice;
int ans=0;
for(int i=1;i<=advice;i++){
scanf("%d%d%d",&tr[i].b,&tr[i