Description
有N个士兵站成一队列, 现在需要选择几个士兵派去侦察。 为了选择合适的士兵, 多次进行如下操作: 如果队列超过三个士兵, 那么去除掉所有站立位置为奇数的士兵, 或者是去除掉所有站立位置为偶数的士兵。直到不超过三个战士,他们将被送去侦察。现有一个“聪明”的士兵, 经常通过选择站在合适的初始位置,成功避免被选中去侦察。这引起了陈教官的注意。陈教官希望你编写一个程序, 当给定士兵数之后,输出有多少个位置上的士兵是不可能被选中去巡逻的。 注: 按上法得到少于三士兵的情况不用去巡逻。 1 <= N <= 21亿
输入格式
有多行(可能有上百行,请尽量优化代码),每行一个数字N,最后一行是0
输出格式
对每一行的数字N,不可能被选中去巡逻的位置数 直到没有数字
输入样例
10 6 0
输出样例
4 0
题意:
对于n个士兵每次去除站在奇数位或站在偶数位的士兵,最终若剩三个人,则将那三个人抓去巡逻,求不可能被抓去巡逻的位置数量。
分析:
在巡逻的士兵当中已经求出f(n),即被抓去巡逻的士兵的方案数,每一种方案对应3个位置被抓去巡逻,那么最多有3*f(n)个位置被抓去巡逻,那么答案就应该是n-3*f(n)
#include <iostream>
#include <algorithm>
using namespace std;
const int N=1e8;
int d[N];
int f(int n){
if(n<N&&d[n]){
return d[n];
}
if(n<3){
return 0;
}
if(n==3){
return 1;
}
int t=f(n/2)+f((n+1)/2);
if(n<N){
d[n]=t;
}
return t;
}
int main(){
int n;
while(cin>>n&&n){
cout<<n-3*f(n)<<endl;
}
return 0;
}
#include <iostream>
#include <algorithm>
using namespace std;
int f(int n){
if(n<3){
return 0;
}else if(n==3){
return 1;
}else{
if(n%2==0){
return 2*f(n/2);
}else{
return f(n/2)+f((n+1)/2);
}
}
}
int main(){
int n;
while(cin>>n&&n){
cout<<n-3*f(n)<<endl;
}
return 0;
}