Datawhale AI 夏令营 机器学习 task1笔记

第一次学习实验很简单,只需要运行一次baseline即可。

步骤:

启动环境后直接点击运行,生成submit.csv文件提交即可。

心得:

虽然完成得很快,但是对baseline的原理与作用却没有什么了解。此外,因为本学期学习了机器学习这门课程,我觉得现在还未用到其相关知识。

但是通过课外了解,我知道了baseline用到了时间序列问题的定义与传统时序模型,加深了我对这两个概念的印象。

课外学习与课后了解

时间序列问题是指对按时间顺序排列的数据点进行分析和预测的问题,往往用来做未来的趋势预测。比如,基于历史股票每天的股价,预测未来股票的价格走向。本次赛题的目标很简单清晰——训练时间序列模型,助力电力需求预测。

时间序列预测问题可以通过多种建模方法来解决,包括传统的时间序列模型机器学习模型深度学习模型

说完了概念,又了解到了baseline模型的大致流程,如图:

精读baseline大模型

代码如下:

# 1. 导入需要用到的相关库
# 导入 pandas 库,用于数据处理和分析
import pandas as pd
# 导入 numpy 库,用于科学计算和多维数组操作
import numpy as np

# 2. 读取训练集和测试集
# 使用 read_csv() 函数从文件中读取训练集数据,文件名为 'train.csv'
train = pd.read_csv('./data/data283931/train.csv')
# 使用 read_csv() 函数从文件中读取测试集数据,文件名为 'train.csv'
test = pd.read_csv('./data/data283931/test.csv')

# 3. 计算训练数据最近11-20单位时间内对应id的目标均值
target_mean = train[train['dt']<=20].groupby(['id'])['target'].mean().reset_index()

# 4. 将target_mean作为测试集结果进行合并
test = test.merge(target_mean, on=['id'], how='left')

# 5. 保存结果文件到本地
test[['id','dt','target']].to_csv('submit.csv', index=None)

总体上,先导入库,读数据,再利用最近时间求电均值,并将电均值作为预测结果。

总之,task1让我对后来的学习更加期待。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值