Datawhale AI 夏令营 机器学习 task3 笔记

第一次尝试

思路1:

在task2的基础上,将特征工程部分变为特征优化。

这里主要构建了历史平移特征、差分特征、和窗口统计特征;每种特征都是有理可据的,具体说明如下:

(1)历史平移特征:通过历史平移获取上个阶段的信息;

(2)差分特征:可以帮助获取相邻阶段的增长差异,描述数据的涨减变化情况。在此基础上还可以构建相邻数据比值变化、二阶差分等;

(3)窗口统计特征:窗口统计可以构建不同的窗口大小,然后基于窗口范围进统计均值、最大值、最小值、中位数、方差的信息,可以反映最近阶段数据的变化情况。

其他代码不变,

代码1

如下:

import numpy as np
import pandas as pd
import lightgbm as lgb
from sklearn.metrics import mean_squared_log_error, mean_absolute_error, mean_squared_error
import tqdm
import sys
import os
import gc
import argparse
import warnings
warnings.filterwarnings('ignore')
train = pd.read_csv('./dataset/train.csv')
test = pd.read_csv('./dataset/test.csv')
# 合并训练数据和测试数据
data = pd.concat([train, test], axis=0).reset_index(drop=True)
data = data.sort_values(['id','dt'], ascending=False).reset_index(drop=True)

# 历史平移
for i in range(10,36):
    data[f'target_shift{i}'] = data.groupby('id')['target'].shift(i)

# 历史平移 + 差分特征
for i in range(1,4):
    data[f'target_shift10_diff{i}'] = data.groupby('id')['target_shift10'].diff(i)
    
# 窗口统计
for win in [15,30,50,70]:
    data[f'target_win{win}_mean'] = data.groupby('id')['target'].rolling(window=win, min_periods=3, closed='left').mean().values
    data[f'target_win{win}_max'] = data.groupby('id')['target'].rolling(window=win, min_periods=3, closed='left').max().values
    data[f'target_win{win}_min'] = data.groupby('id')['target'].rolling(window=win, min_periods=3, closed='left').min().values
    data[f'target_win{win}_std'] = data.groupby('id')['target'].rolling(window=win, min_periods=3, closed='left').std().values

# 历史平移 + 窗口统计
for win in [7,14,28,35,50,70]:
    data[f'target_shift10_win{win}_mean'] = data.groupby('id')['target_shift10'].rolling(window=win, min_periods=3, closed='left').mean().values
    data[f'target_shift10_win{win}_max'] = data.groupby('id')['target_shift10'].rolling(window=win, min_periods=3, closed='left').max().values
    data[f'target_shift10_win{win}_min'] = data.groupby('id')['target_shift10'].rolling(window=win, min_periods=3, closed='left').min().values
    data[f'target_shift10_win{win}_sum'] = data.groupby('id')['target_shift10'].rolling(window=win, min_periods=3, closed='left').sum().values
    data[f'target_shift710win{win}_std'] = data.groupby('id')['target_shift10'].rolling(window=win, min_periods=3, closed='left').std().values
    
    # 进行数据切分
train = data[data.target.notnull()].reset_index(drop=True)
test = data[data.target.isnull()].reset_index(drop=True)

# 确定输入特征
train_cols = [f for f in data.columns if f not in ['id','target']]

def time_model(lgb, train_df, test_df, cols):
    # 训练集和验证集切分
    trn_x, trn_y = train_df[train_df.dt>=31][cols], train_df[train_df.dt>=31]['target']
    val_x, val_y = train_df[train_df.dt<=30][cols], train_df[train_df.dt<=30]['target']
    # 构建模型输入数据
    train_matrix = lgb.Dataset(trn_x, label=trn_y)
    valid_matrix = lgb.Dataset(val_x, label=val_y)
    # lightgbm参数
    lgb_params = {
        'boosting_type': 'gbdt',
        'objective': 'regression',
        'metric': 'mse',
        'min_child_weight': 5,
        'num_leaves': 2 ** 5,
        'lambda_l2': 10,
        'feature_fraction': 0.8,
        'bagging_fraction': 0.8,
        'bagging_freq': 4,
        'learning_rate': 0.05,
        'seed': 2024,
        'nthread' : 16,
        'verbose' : -1,
    }
    # 训练模型
    model = lgb.train(lgb_params, train_matrix, 50000, valid_sets=[train_matrix, valid_matrix], 
                      categorical_feature=[], verbose_eval=500, early_stopping_rounds=500)
    # 验证集和测试集结果预测
    val_pred = model.predict(val_x, num_iteration=model.best_iteration)
    test_pred = model.predict(test_df[cols], num_iteration=model.best_iteration)
    # 离线分数评估
    score = mean_squared_error(val_pred, val_y)
    print(score)
       
    return val_pred, test_pred
    
lgb_oof, lgb_test = time_model(lgb, train, test, train_cols)

# 保存结果文件到本地
test['target'] = lgb_test
test[['id','dt','target']].to_csv('submit.csv', index=None)

结果1:

 总结1:

相较于单纯用历史平移特征与窗口统计特征,采用历史平移特征、差分特征、和窗口统计特征结合的方法上分更高,特征提取更全面。

第二次尝试

思路2:

采用模型融合的方法,进行模型融合的前提是有多个模型的输出结果,比如使用catboost、xgboost和lightgbm三个模型分别输出三个结果,这时就可以将三个结果进行融合,最常见的是将结果直接进行加权平均融合。

下面我们构建了cv_model函数,内部可以选择使用lightgbm、xgboost和catboost模型,可以依次跑完这三个模型,然后将三个模型的结果进行取平均进行融合。

对于每个模型均选择经典的K折交叉验证方法进行离线评估,大体流程如下:

1、K折交叉验证会把样本数据随机的分成K份;

2、每次随机的选择K-1份作为训练集,剩下的1份做验证集;

3、当这一轮完成后,重新随机选择K-1份来训练数据;

4、最后将K折预测结果取平均作为最终提交结果。

 代码2

在task2的特征工程基础上,加上例题代码并修改

ps:记得运用特征构建,确定输入特征train_cols,以及下载库与包

pip install xgboost与pip install catboost

如下:

from sklearn.model_selection import StratifiedKFold, KFold, GroupKFold
import lightgbm as lgb
import xgboost as xgb
from catboost import CatBoostRegressor

import numpy as np
import pandas as pd
from sklearn.metrics import mean_squared_log_error, mean_absolute_error, mean_squared_error
import tqdm
import sys
import os
import gc
import argparse
import warnings
warnings.filterwarnings('ignore')

train = pd.read_csv('./dataset/train.csv')
test = pd.read_csv('./dataset/test.csv')

# 合并训练数据和测试数据,并进行排序
data = pd.concat([test, train], axis=0, ignore_index=True)
data = data.sort_values(['id','dt'], ascending=False).reset_index(drop=True)

# 历史平移
for i in range(10,30):
    data[f'last{i}_target'] = data.groupby(['id'])['target'].shift(i)
    
# 窗口统计
data[f'win3_mean_target'] = (data['last10_target'] + data['last11_target'] + data['last12_target']) / 3

# 进行数据切分
train = data[data.target.notnull()].reset_index(drop=True)
test = data[data.target.isnull()].reset_index(drop=True)

# 确定输入特征
train_cols = [f for f in data.columns if f not in ['id','target']]

def cv_model(clf, train_x, train_y, test_x, clf_name, seed = 2024):
    '''
    clf:调用模型
    train_x:训练数据
    train_y:训练数据对应标签
    test_x:测试数据
    clf_name:选择使用模型名
    seed:随机种子
    '''
    folds = 5
    kf = KFold(n_splits=folds, shuffle=True, random_state=seed)
    oof = np.zeros(train_x.shape[0])
    test_predict = np.zeros(test_x.shape[0])
    cv_scores = []
    
    for i, (train_index, valid_index) in enumerate(kf.split(train_x, train_y)):
        print('************************************ {} ************************************'.format(str(i+1)))
        trn_x, trn_y, val_x, val_y = train_x.iloc[train_index], train_y[train_index], train_x.iloc[valid_index], train_y[valid_index]
        
        if clf_name == "lgb":
            train_matrix = clf.Dataset(trn_x, label=trn_y)
            valid_matrix = clf.Dataset(val_x, label=val_y)
            params = {
                'boosting_type': 'gbdt',
                'objective': 'regression',
                'metric': 'mae',
                'min_child_weight': 6,
                'num_leaves': 2 ** 6,
                'lambda_l2': 10,
                'feature_fraction': 0.8,
                'bagging_fraction': 0.8,
                'bagging_freq': 4,
                'learning_rate': 0.1,
                'seed': 2023,
                'nthread' : 16,
                'verbose' : -1,
            }
            model = clf.train(params, train_matrix, 1000, valid_sets=[train_matrix, valid_matrix],
                              categorical_feature=[], verbose_eval=200, early_stopping_rounds=100)
            val_pred = model.predict(val_x, num_iteration=model.best_iteration)
            test_pred = model.predict(test_x, num_iteration=model.best_iteration)
        
        if clf_name == "xgb":
            xgb_params = {
              'booster': 'gbtree', 
              'objective': 'reg:squarederror',
              'eval_metric': 'mae',
              'max_depth': 5,
              'lambda': 10,
              'subsample': 0.7,
              'colsample_bytree': 0.7,
              'colsample_bylevel': 0.7,
              'eta': 0.1,
              'tree_method': 'hist',
              'seed': 520,
              'nthread': 16
              }
            train_matrix = clf.DMatrix(trn_x , label=trn_y)
            valid_matrix = clf.DMatrix(val_x , label=val_y)
            test_matrix = clf.DMatrix(test_x)
            
            watchlist = [(train_matrix, 'train'),(valid_matrix, 'eval')]
            
            model = clf.train(xgb_params, train_matrix, num_boost_round=1000, evals=watchlist, verbose_eval=200, early_stopping_rounds=100)
            val_pred  = model.predict(valid_matrix)
            test_pred = model.predict(test_matrix)
            
        if clf_name == "cat":
            params = {'learning_rate': 0.1, 'depth': 5, 'bootstrap_type':'Bernoulli','random_seed':2023,
                      'od_type': 'Iter', 'od_wait': 100, 'random_seed': 11, 'allow_writing_files': False}
            
            model = clf(iterations=1000, **params)
            model.fit(trn_x, trn_y, eval_set=(val_x, val_y),
                      metric_period=200,
                      use_best_model=True, 
                      cat_features=[],
                      verbose=1)
            
            val_pred  = model.predict(val_x)
            test_pred = model.predict(test_x)
        
        oof[valid_index] = val_pred
        test_predict += test_pred / kf.n_splits
        
        score = mean_absolute_error(val_y, val_pred)
        cv_scores.append(score)
        print(cv_scores)
        
    return oof, test_predict

# 选择lightgbm模型
lgb_oof, lgb_test = cv_model(lgb, train[train_cols], train['target'], test[train_cols], 'lgb')
# 选择xgboost模型
xgb_oof, xgb_test = cv_model(xgb, train[train_cols], train['target'], test[train_cols], 'xgb')
# 选择catboost模型
cat_oof, cat_test = cv_model(CatBoostRegressor, train[train_cols], train['target'], test[train_cols], 'cat')

# 进行取平均融合
final_test = (lgb_test + xgb_test + cat_test) / 3

# 保存结果文件到本地
test['target'] =final_test
test[['id','dt','target']].to_csv('submit.csv', index=None)

 结果2:

总结2: 

第二次尝试在task2基础上使用进阶模型的方式,更加精确的估计了结果。在读懂代码时也要注意,是否有数据未导入,变量未考虑与定义。

第三次尝试:

思路3:

将第一与第二次尝试结合。

代码3:

from sklearn.model_selection import StratifiedKFold, KFold, GroupKFold
import lightgbm as lgb
import xgboost as xgb
from catboost import CatBoostRegressor

import numpy as np
import pandas as pd
from sklearn.metrics import mean_squared_log_error, mean_absolute_error, mean_squared_error
import tqdm
import sys
import os
import gc
import argparse
import warnings
warnings.filterwarnings('ignore')

train = pd.read_csv('./dataset/train.csv')
test = pd.read_csv('./dataset/test.csv')

# 合并训练数据和测试数据
data = pd.concat([train, test], axis=0).reset_index(drop=True)
data = data.sort_values(['id','dt'], ascending=False).reset_index(drop=True)

# 历史平移
for i in range(10,36):
    data[f'target_shift{i}'] = data.groupby('id')['target'].shift(i)

# 历史平移 + 差分特征
for i in range(1,4):
    data[f'target_shift10_diff{i}'] = data.groupby('id')['target_shift10'].diff(i)
    
# 窗口统计
for win in [15,30,50,70]:
    data[f'target_win{win}_mean'] = data.groupby('id')['target'].rolling(window=win, min_periods=3, closed='left').mean().values
    data[f'target_win{win}_max'] = data.groupby('id')['target'].rolling(window=win, min_periods=3, closed='left').max().values
    data[f'target_win{win}_min'] = data.groupby('id')['target'].rolling(window=win, min_periods=3, closed='left').min().values
    data[f'target_win{win}_std'] = data.groupby('id')['target'].rolling(window=win, min_periods=3, closed='left').std().values

# 历史平移 + 窗口统计
for win in [7,14,28,35,50,70]:
    data[f'target_shift10_win{win}_mean'] = data.groupby('id')['target_shift10'].rolling(window=win, min_periods=3, closed='left').mean().values
    data[f'target_shift10_win{win}_max'] = data.groupby('id')['target_shift10'].rolling(window=win, min_periods=3, closed='left').max().values
    data[f'target_shift10_win{win}_min'] = data.groupby('id')['target_shift10'].rolling(window=win, min_periods=3, closed='left').min().values
    data[f'target_shift10_win{win}_sum'] = data.groupby('id')['target_shift10'].rolling(window=win, min_periods=3, closed='left').sum().values
    data[f'target_shift710win{win}_std'] = data.groupby('id')['target_shift10'].rolling(window=win, min_periods=3, closed='left').std().values

# 进行数据切分
train = data[data.target.notnull()].reset_index(drop=True)
test = data[data.target.isnull()].reset_index(drop=True)

# 确定输入特征
train_cols = [f for f in data.columns if f not in ['id','target']]

def cv_model(clf, train_x, train_y, test_x, clf_name, seed = 2024):
    '''
    clf:调用模型
    train_x:训练数据
    train_y:训练数据对应标签
    test_x:测试数据
    clf_name:选择使用模型名
    seed:随机种子
    '''
    folds = 5
    kf = KFold(n_splits=folds, shuffle=True, random_state=seed)
    oof = np.zeros(train_x.shape[0])
    test_predict = np.zeros(test_x.shape[0])
    cv_scores = []
    
    for i, (train_index, valid_index) in enumerate(kf.split(train_x, train_y)):
        print('************************************ {} ************************************'.format(str(i+1)))
        trn_x, trn_y, val_x, val_y = train_x.iloc[train_index], train_y[train_index], train_x.iloc[valid_index], train_y[valid_index]
        
        if clf_name == "lgb":
            train_matrix = clf.Dataset(trn_x, label=trn_y)
            valid_matrix = clf.Dataset(val_x, label=val_y)
            params = {
                'boosting_type': 'gbdt',
                'objective': 'regression',
                'metric': 'mae',
                'min_child_weight': 6,
                'num_leaves': 2 ** 6,
                'lambda_l2': 10,
                'feature_fraction': 0.8,
                'bagging_fraction': 0.8,
                'bagging_freq': 4,
                'learning_rate': 0.1,
                'seed': 2023,
                'nthread' : 16,
                'verbose' : -1,
            }
            model = clf.train(params, train_matrix, 1000, valid_sets=[train_matrix, valid_matrix],
                              categorical_feature=[], verbose_eval=200, early_stopping_rounds=100)
            val_pred = model.predict(val_x, num_iteration=model.best_iteration)
            test_pred = model.predict(test_x, num_iteration=model.best_iteration)
        
        if clf_name == "xgb":
            xgb_params = {
              'booster': 'gbtree', 
              'objective': 'reg:squarederror',
              'eval_metric': 'mae',
              'max_depth': 5,
              'lambda': 10,
              'subsample': 0.7,
              'colsample_bytree': 0.7,
              'colsample_bylevel': 0.7,
              'eta': 0.1,
              'tree_method': 'hist',
              'seed': 520,
              'nthread': 16
              }
            train_matrix = clf.DMatrix(trn_x , label=trn_y)
            valid_matrix = clf.DMatrix(val_x , label=val_y)
            test_matrix = clf.DMatrix(test_x)
            
            watchlist = [(train_matrix, 'train'),(valid_matrix, 'eval')]
            
            model = clf.train(xgb_params, train_matrix, num_boost_round=1000, evals=watchlist, verbose_eval=200, early_stopping_rounds=100)
            val_pred  = model.predict(valid_matrix)
            test_pred = model.predict(test_matrix)
            
        if clf_name == "cat":
            params = {'learning_rate': 0.1, 'depth': 5, 'bootstrap_type':'Bernoulli','random_seed':2023,
                      'od_type': 'Iter', 'od_wait': 100, 'random_seed': 11, 'allow_writing_files': False}
            
            model = clf(iterations=1000, **params)
            model.fit(trn_x, trn_y, eval_set=(val_x, val_y),
                      metric_period=200,
                      use_best_model=True, 
                      cat_features=[],
                      verbose=1)
            
            val_pred  = model.predict(val_x)
            test_pred = model.predict(test_x)
        
        oof[valid_index] = val_pred
        test_predict += test_pred / kf.n_splits
        
        score = mean_absolute_error(val_y, val_pred)
        cv_scores.append(score)
        print(cv_scores)
        
    return oof, test_predict

# 选择lightgbm模型
lgb_oof, lgb_test = cv_model(lgb, train[train_cols], train['target'], test[train_cols], 'lgb')
# 选择xgboost模型
xgb_oof, xgb_test = cv_model(xgb, train[train_cols], train['target'], test[train_cols], 'xgb')
# 选择catboost模型
cat_oof, cat_test = cv_model(CatBoostRegressor, train[train_cols], train['target'], test[train_cols], 'cat')

# 进行取平均融合
final_test = (lgb_test + xgb_test + cat_test) / 3

# 保存结果文件到本地
test['target'] =final_test
test[['id','dt','target']].to_csv('submit.csv', index=None)

结果3:

总结3:

 在task2的代码基础上,将特征选择与模型选择一起优化,两次尝试合二为一,得到一个最好的成绩。这也预示我们要从事物的不同角度着手优化,加起来效果事半功倍。

深度学习方法

思路:

  1. 导入库:代码开始处导入了所需的库,包括数据处理库NumPy和Pandas,以及用于构建LSTM模型的Keras库。

  2. 读取数据:使用Pandas的read_csv函数读取训练数据集train.csv和测试数据集test.csv

  3. 定义数据预处理函数

    1. preprocess_data函数用于准备训练和测试数据。

    2. 数据按id列进行分组。

    3. 对于每个id,提取特定列(索引为3的列)的数据作为时间序列。

    4. 创建多个序列,每个序列长度为look_back,默认为100。

    5. 序列被反转,并且如果序列长度不足100,则用0填充。

    6. 训练数据集的标签Y是序列的一部分,同样进行反转。

    7. 测试数据集(OOT,Out-Of-Time)也被反转并用0填充以满足序列长度要求。

  4. 定义模型构建函数

    1. build_model函数用于构建LSTM模型。

    2. 模型包括一个LSTM层,用于学习时间序列数据的特征,以及一个重复向量层RepeatVector,用于复制上一个LSTM层的输出以供下一个LSTM层使用。

    3. 再次使用LSTM层和时间分布的密集层来预测序列的下一个值。

    4. 模型使用均方误差作为损失函数,并使用Adam优化器。

  5. 构建和训练模型

    1. 设置序列长度look_back、特征数n_features和输出时间单位数n_output

    2. 调用preprocess_data函数预处理训练数据。

    3. 使用build_model函数构建模型。

    4. 使用模型的fit方法训练模型,指定迭代次数(epochs)和批量大小(batch_size)。

  6. 进行预测

    1. 使用训练好的模型对测试数据集进行预测。

    2. 这里需要注意注意自行将预测结果转化为提交格.

代码:

import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from keras.models import Sequential
from keras.layers import LSTM, Dense, RepeatVector, TimeDistributed
from keras.optimizers import Adam

train = pd.read_csv('train.csv')
test = pd.read_csv('test.csv')

# 数据预处理
def preprocess_data(df, look_back=100):
    # 将数据按照id进行分组
    grouped = df.groupby('id')
    datasets = {}
    for id, group in grouped:
        datasets[id] = group.values
        
    # 准备训练数据集
    X, Y = [], []
    for id, data in datasets.items():
        for i in range(10, 15): # 每个id构建5个序列
            a = data[i:(i + look_back), 3]
            a = np.append(a, np.array([0]*(100-len(a))))
            X.append(a[::-1])
            Y.append(data[i-10:i, 3][::-1])
    
    # 准备测试数据集
    OOT = []
    for id, data in datasets.items():
        a = data[:100, 3]
        a = np.append(a, np.array([0]*(100-len(a))))
        OOT.append(a[::-1])
    
    return np.array(X, dtype=np.float64), np.array(Y, dtype=np.float64), np.array(OOT, dtype=np.float64)

# 定义模型
def build_model(look_back, n_features, n_output):
    model = Sequential()
    model.add(LSTM(50, input_shape=(look_back, n_features)))
    model.add(RepeatVector(n_output))
    model.add(LSTM(50, return_sequences=True))
    model.add(TimeDistributed(Dense(1)))
    model.compile(loss='mean_squared_error', optimizer=Adam(0.001))
    return model

# 构建和训练模型
look_back = 100  # 序列长度
n_features = 1  # 假设每个时间点只有一个特征
n_output = 10  # 预测未来10个时间单位的值

# 预处理数据
X, Y, OOT = preprocess_data(train, look_back=look_back)

# 构建模型
model = build_model(look_back, n_features, n_output)

# 训练模型
model.fit(X, Y, epochs=10, batch_size=64, verbose=1)

# 进行预测
predicted_values = model.predict(OOT)

test['target'] =predicted_values
test[['id','dt','target']].to_csv('submit.csv', index=None)

结果:

无法跑出结果,运行报错,无法安装相关库。

总结:

 

时间序列预测是一个不断发展的领域,随着技术的进步,我们可以期待更多的优化方法和模型的出现。深度学习模型,特别是LSTM和其变体,已经在许多时间序列预测任务中显示出了优越的性能。未来的研究可能会集中在以下几个方面:

  • 更复杂的模型结构:如引入注意力机制的LSTM模型,以更好地捕捉时间序列中的长期依赖关系。

  • 多模态数据融合:结合时间序列数据和其他类型的数据,如文本或图像,以提供更全面的分析。

  • 模型解释性:提高模型的可解释性,以便更好地理解预测结果。

  • 自动化特征工程:开发自动化的特征工程工具,以减少手动特征提取的工作量。

  • 实时预测:提高模型在实时数据流上的预测能力。

  • 模型鲁棒性:提高模型对异常值和噪声的鲁棒性。

反思:

对代码掌握较差,对vs等python的工具以及库的安装不够清楚。但是受益颇多。

  • 4
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值