(牛客)糖果传递

文章讲述了两个与传递操作相关的问题,一个是糖果传递,要求求出使所有人糖果均等的最小传递代价;另一个是纸牌均分,目标是找到最少移动次数使得每堆纸牌数量相同。两个问题的关键在于利用中位数优化策略,通过计算前缀和和使用中位数来减少传递或移动的次数。
摘要由CSDN通过智能技术生成

链接:登录—专业IT笔试面试备考平台_牛客网
来源:牛客网

糖果传递这道题和均分纸牌这道题差不多 只不过一个是求最小代价一个是求最小传递次数

这两道题得共同点 1. 都将每个人得传递行为看成单方向得传递了Xi次 只不过如果Xi > 0 就是传出去 如果小于0 就是传到这个人手上 
 

题目描述

有n个小朋友坐成一圈,每人有ai个糖果。每人只能给左右两人传递糖果。每人每次传递一个糖果代价为1。

输入描述:

 

第一行一个正整数n ≤ 1000000,表示小朋友的个数.

接下来n行,每行一个整数ai,表示第i个小朋友得到的糖果的颗数.

输出描述:

求使所有人获得均等糖果的最小代价。

示例1

输入

复制4 1 2 5 4

4
1
2
5
4

输出

复制4

4

备注:

对于100% 的数据n≤106n\le 10^6n≤106。

一圈人进行互传 从初始到最终 每个人最终得传递次数是确定得 每个人得传递次数加起来就是最终得传递次数

我对于每个人都只看他往一个方向传 往左往右都一样因为他最终得传递行为是固定得

设第i个人 往左 传了Xi次 (Xi 可正可负 如果负就是从左边拿  如果正就是往左边传) 

最终每个人得糖果都是平均数那么

我们用xi表示第i个小朋友给第i−1个小朋友的糖果数,其中x1表示第1个小朋友给第n个朋友的糖果数,那么最终答案即为|x1|+|x2|+…|xn|。
我们假设最后每个人剩avg个糖果,那么可以得到:
对于第一个小朋友:a1+x2−x1=avg
对于第二个小朋友:a2+x3−x2=avg

对于最后一个小朋友:an+x1−xn=avg
整理一下即可得到:
x2=avg−a1+x1
x3=avg−a2+x2=2avg+x1−a2−a1

xn=avg−an−1+xn−1=(n−1)avg+x1−∑n−1i=1ai
我们设c[1]=a[1]-ave
c[2]=c[1]+a[2]-ave
则有c[i]=c[i-1]+a[i]-ave
上述式子即可转化为求解|x1|+|x1−c1|+|x1−c2|…+|x1−cn−1|的最小值,那么直接令x1等于c的中位数即可。
3、货仓选址:给定数轴上的n个点,找出一个到他们的距离之和尽量小的点,而这个点就是这些数中的中位数,证明(随便找一个点,若是左边的点比右边多,那么往左移距离和就会减少,反之右移距离减少,一定是中位数最优)。
————————————————
版权声明:本文为CSDN博主「锵锵锵锵~蒋」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/weixin_43629813/article/details/99303401

然后这个用下前缀和 绝对值里边变成减号得形式,再结合几何意义

就是0 c1 c2 c3 ----cn-1 到W得绝对值得最小值 那么W一定是取这n个数得中位数 

这里要清楚从这个推出得表达式 中 是减到Cn-1 然后再加上一个0点 构成n个点得区间选址问题

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MX = 1E6+10;
int a[MX], b[MX];
ll ans, sum;
int n;
int main()
{
    cin >> n;
    for(int i = 1; i <= n; i++)
    {
        cin >> a[i];
        sum += a[i];
    }
    sum /= n;
    for(int i = 1; i < n; i++)
    {
        a[i] = a[i-1] + a[i] - sum;
    }
    sort(a, a+n);
    for(int i = 0; i < n; i++)
    {
        ans += abs(a[i] - (a[(n-1)/2]));
    }
    cout << ans;
    return 0;
}

纸牌均分

链接:登录—专业IT笔试面试备考平台_牛客网
来源:牛客网
 

题号:NC16739
时间限制:C/C++ 1秒,其他语言2秒
空间限制:C/C++ 131072K,其他语言262144K
64bit IO Format: %lld

题目描述

有N堆纸牌,编号分别为1,2,…, N。每堆上有若干张,但纸牌总数必为N的倍数。可以在任一堆上取若于张纸牌,然后移动。
移牌规则为:在编号为1堆上取的纸牌,只能移到编号为2的堆上;在编号为N的堆上取的纸牌,只能移到编号为N-1的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。

现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。

例如 N=4,4堆纸牌数分别为:

① 9 ② 8 ③ 17 ④ 6
移动3次可达到目的:
从③取4张牌放到 ④ (9 8 13 10) -> 从③取3张牌放到 ②(9 11 10 10)-> 从②取1张牌放到①(10 10 10 10)。

输入描述:

输入格式:
N(N堆纸牌,1<=N<=100)
A1 A2 … An (N 堆纸牌,每堆纸牌初始数,l<=Ai<=10000)

输出描述:

输出格式:
所有堆均达到相等时的最少移动次数。

示例1

输入

复制4 9 8 17 6

4
9 8 17 6

输出

复制3

3
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MX = 1E6+10;
int a[MX], b[MX];
ll ans, sum;
int n;
int main()
{
    cin >> n;
    for(int i = 1; i <= n; i++)
    {
        cin >> a[i];
        sum += a[i];
    }
    sum /= n;
    for(int i = 1; i < n; i++)
    {
        a[i] = a[i-1] + a[i] - sum;
    }
    for(int i = 1; i < n; i++)
    {
        if(!a[i] == 0)
        {
            ans++;
        }
    }
    cout << ans;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值