每天你都可能会执行许多重复的任务,例如阅读新闻、发邮件、查看天气、清理文件夹等等,使用自动化脚本,就无需手动一次又一次地完成这些任务,非常方便。而在某种程度上,Python 就是自动化的代名词。
今天分享 8 个非常有用的 Python 自动化脚本。喜欢记得收藏、关注、点赞。
1、自动化阅读网页新闻
这个脚本能够实现从网页中抓取文本,然后自动化语音朗读,当你想听新闻的时候,这是个不错的选择。
代码分为两大部分,第一通过爬虫抓取网页文本呢,第二通过阅读工具来朗读文本。
需要的第三方库:
Beautiful Soup - 经典的HTML/XML文本解析器,用来提取爬下来的网页信息。
requests - 好用到逆天的HTTP工具,用来向网页发送请求获取数据。
Pyttsx3 - 将文本转换为语音,并控制速率、频率和语音。
import pyttsx3 import requests from bs4 import BeautifulSoup engine = pyttsx3.init('sapi5') voices = engine.getProperty('voices') newVoiceRate = 130 ## Reduce The Speech Rate engine.setProperty('rate',newVoiceRate) engine.setProperty('voice', voices[1].id) def speak(audio): engine.say(audio) engine.runAndWait() text = str(input("Paste article\n")) res = requests.get(text) soup = BeautifulSoup(res.text,'html.parser') articles = [] for i in range(len(soup.select('.p'))): article = soup.select('.p')[i].getText().strip() articles.append(article) text = " ".join(articles) speak(text) # engine.save_to_file(text, 'test.mp3') ## If you want to save the speech as a audio file engine.runAndWait()
2、自动化数据探索
数据探索是数据科学项目的第一步,你需要了解数据的基本信息才能进一步分析更深的价值。
一般我们会用pandas、matplotlib等工具来探索数据,但需要自己编写大量代码,如果想提高效率,Dtale是个不错的选择。
Dtale特点是用一行代码生成自动化分析报告,它结合了Flask后端和React前端,为我们提供了一种查看和分析Pandas数据结构的简便方法。
我们可以在Jupyter上实用Dtale。
需要的第三方库:
Dtale - 自动生成分析报告。
### Importing Seaborn Library For Some Datasets import seaborn as sns ### Printing Inbuilt Datasets of S