Python 一直以来被大家所诟病的一点就是执行速度慢,但不可否认的是 Python 依然是我们学习和工作中的一大利器。因此,我们对 Python 呢是“又爱又恨”。
本文总结了一些小 tips 有助于提升 Python 执行速度、优化性能。以下所有技巧都经过我的验证,可放心食用💖。
先上结论:
- 使用
map()
进行函数映射 - 使用
set()
求交集 - 使用
sort()
或sorted()
排序 - 使用
collections.Counter()
计数 - 使用列表推导
- 使用
join()
连接字符串 - 使用
x, y = y, x
交换变量 - 使用
while 1
取代while True
- 使用装饰器缓存
- 减少点运算符(
.
)的使用 - 使用
for
循环取代while
循环 - 使用
Numba.jit
加速计算 - 使用
Numpy
矢量化数组 - 使用
in
检查列表成员 - 使用
itertools
库迭代
如何测量程序的执行时间❓
关于 Python 如何精确地测量程序的执行时间,这个问题看起来简单其实很复杂,因为程序的执行时间受到很多因素的影响,例如操作系统、Python 版本以及相关硬件(CPU 性能、内存读写速度)等。在同一台电脑上运行相同版本的语言时,上述因素就是确定的了,但是程序的睡眠时间依然是变化的,且电脑上正在运行的其他程序也会对实验有干扰,因此严格来说这就是《实验不可重复》。
我了解到的关于计时比较有代表性的两个库就是time
和timeit
。
其中,time
库中有time()
、perf_counter()
以及process_time()
三个函数可用来计时⏲(以秒为单位),加后缀_ns
表示以纳秒计时(自 Python3.7 始)。在此之前还有clock()
函数,但是在 Python3.3 之后被移除了。上述三者的区别如下:
time()
精度上相对没有那么高,而且受系统的影响,适合表示日期时间或者大程序的计时。perf_counter()
适合小一点的程序测试,会计算sleep()
时间。process_time()
适合小一点的程序测试,不计算sleep()
时间。
与time
库相比,timeit
有两个优点:
timeit
会根据您的操作系统和 Python 版本选择最佳计时器。timeit
在计时期间会暂时禁用垃圾回收。
timeit.timeit(stmt='pass', setup='pass', timer=<default timer>, number=1000000, globals=None)
参数说明:
stmt='pass'
:需要计时的语句或者函数。setup='pass'
:执行stmt
之前要运行的代码。通常,它用于导入一些模块或声明一些必要的变量。timer=<default timer>
:计时器函数,默认为time.perf_counter()
。number=1000000
:执行计时语句的次数,默认为一百万次。globals=None
:指定执行代码的命名空间。
本文所有的计时均采用timeit
方法,且采用默认的执行次数一百万次。
为什么要执行一百万次呢?因为我们的测试程序很短,如果不执行这么多次的话,根本看不出差距。
正文
1.使用map()
进行函数映射
✅ Exp1:将字符串数组中的小写字母转为大写字母。
测试数组为 oldlist = ['life', 'is', 'short', 'i', 'choose', 'python']。
- 方法一
newlist = []
for word in oldlist:
newlist.append(word.upper())
复制代码
- 方法二
list(map(str.upper, oldlist))
复制代码
方法一耗时 0.5267724000000005s,方法二耗时 0.41462569999999843s,性能提升 21.29% 🚀
2.使用set()
求交集
✅ Exp2:求两个list
的交集。
测试数组:a = [1,2,3,4,5],b = [2,4,6,8,10]。
- 方法一
overlaps = []
for x in a:
for y in b:
if x == y:
overlaps.append(x)
复制代码
- 方法二
list(set(a) & set(b))
复制代码
方法一耗时 0.9507264000000006s,方法二耗时 0.6148200999999993s,性能提升 35.33% 🚀</