牛哇,这5个技能巧直接让你的Python性能起飞

本文总结了15个能提升Python程序执行速度的技巧,包括使用内置库函数、列表推导、装饰器缓存等。通过实例对比,展示了每个技巧的性能提升效果,强调了尽量避免使用点运算符、循环中使用而非循环,以及利用Numba和NumPy加速计算的重要性。
摘要由CSDN通过智能技术生成

Python 一直以来被大家所诟病的一点就是执行速度慢,但不可否认的是 Python 依然是我们学习和工作中的一大利器。因此,我们对 Python 呢是“又爱又恨”。

本文总结了一些小 tips 有助于提升 Python 执行速度、优化性能。以下所有技巧都经过我的验证,可放心食用💖。

先上结论:

  1. 使用map()进行函数映射
  2. 使用set()求交集
  3. 使用sort()sorted()排序
  4. 使用collections.Counter()计数
  5. 使用列表推导
  6. 使用join()连接字符串
  7. 使用x, y = y, x交换变量
  8. 使用while 1取代while True
  9. 使用装饰器缓存
  10. 减少点运算符(.)的使用
  11. 使用for循环取代while循环
  12. 使用Numba.jit加速计算
  13. 使用Numpy矢量化数组
  14. 使用in检查列表成员
  15. 使用itertools库迭代

如何测量程序的执行时间❓

关于 Python 如何精确地测量程序的执行时间,这个问题看起来简单其实很复杂,因为程序的执行时间受到很多因素的影响,例如操作系统、Python 版本以及相关硬件(CPU 性能、内存读写速度)等。在同一台电脑上运行相同版本的语言时,上述因素就是确定的了,但是程序的睡眠时间依然是变化的,且电脑上正在运行的其他程序也会对实验有干扰,因此严格来说这就是《实验不可重复》。

我了解到的关于计时比较有代表性的两个库就是timetimeit

其中,time库中有time()perf_counter()以及process_time()三个函数可用来计时⏲(以秒为单位),加后缀_ns表示以纳秒计时(自 Python3.7 始)。在此之前还有clock()函数,但是在 Python3.3 之后被移除了。上述三者的区别如下:

  • time()精度上相对没有那么高,而且受系统的影响,适合表示日期时间或者大程序的计时。
  • perf_counter()适合小一点的程序测试,会计算sleep()时间。
  • process_time()适合小一点的程序测试,不计算sleep()时间。

time库相比,timeit 有两个优点:

  • timeit 会根据您的操作系统和 Python 版本选择最佳计时器。
  • timeit 在计时期间会暂时禁用垃圾回收。

timeit.timeit(stmt='pass', setup='pass', timer=<default timer>, number=1000000, globals=None) 参数说明:

  • stmt='pass':需要计时的语句或者函数。
  • setup='pass':执行stmt之前要运行的代码。通常,它用于导入一些模块或声明一些必要的变量。
  • timer=<default timer>:计时器函数,默认为time.perf_counter()
  • number=1000000:执行计时语句的次数,默认为一百万次。
  • globals=None:指定执行代码的命名空间。

本文所有的计时均采用timeit方法,且采用默认的执行次数一百万次

为什么要执行一百万次呢?因为我们的测试程序很短,如果不执行这么多次的话,根本看不出差距。

正文

1.使用map()进行函数映射

✅ Exp1:将字符串数组中的小写字母转为大写字母。

测试数组为 oldlist = ['life', 'is', 'short', 'i', 'choose', 'python']。

  • 方法一
newlist = []
for word in oldlist:
    newlist.append(word.upper())
复制代码
  • 方法二
list(map(str.upper, oldlist))
复制代码

方法一耗时 0.5267724000000005s,方法二耗时 0.41462569999999843s,性能提升 21.29% 🚀

2.使用set()求交集

✅ Exp2:求两个list的交集。

测试数组:a = [1,2,3,4,5],b = [2,4,6,8,10]。

  • 方法一
overlaps = []
for x in a:
    for y in b:
        if x == y:
            overlaps.append(x)
复制代码
  • 方法二
list(set(a) & set(b))
复制代码

方法一耗时 0.9507264000000006s,方法二耗时 0.6148200999999993s,性能提升 35.33% 🚀</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值