Python 股票分析入门

本文以股票分析为例,介绍Python数据分析的基本流程。首先,通过学习Python基础和安装anaconda搭建环境,接着使用numpy和pandas处理数据,再利用matplotlib和seaborn进行数据可视化。主要内容包括数据获取、数据处理和数据可视化,旨在帮助初学者快速入门股票分析。
摘要由CSDN通过智能技术生成

初入数据分析大门,感觉需要补的知识太多太多。不太建议系统补齐各种知识,因为大概率会倒在半路上。

以项目为导向,梳理大概流程,对流程中所需的知识点进行大致学习,以后遇到知识盲点再回来补。

接下来我以股票分析为例来了解数据分析流程。

个人认为股票分析无非就分为获取数据数据处理数据可视化三个部分,依赖 Python 强大的第三方开源库,上手难度变得非常低。

所需知识

  • 基础
    • Python
  • 环境
    • anaconda
  • 数据获取
    • pandas_datareader
  • 数据处理
    • numpy
    • pandas
  • 数据可视化
    • matplotlib seaborn

目的

  • 分析股票走势
  • 多只股票的关系

Python 基本语法

推荐去看廖雪峰的 Python 教程,浅显易懂,上手很快。

安装 anaconda

Anaconda是一个包含180+的科学包及其依赖项的开源Python发行版本。

安装 anaconda,直接去anaconda 官网下载安装即可。

anaconda 安装成功后,会自带安装 Jupyter,jupyter 主要用于我们代码的编写和运行。

创建一个新文件夹 stock-market-analysis ,进入当前目录,启动 jupyter 。

# 启动 jupyter
conda notebook 
复制代码

启动成功,在浏览器中打开 http://localhost:8888/tree) ,单击 new,创建一个新的 notebook 就可以开始愉快的玩耍了!

numpy

numpy 是一个用于科学计算的 Python 库。

基本用法

# 引入 numpy
import numpy as np
复制代码
# 创建一个长度为15,3乘5的二维数组
a = np.arange(15).reshape(3, 5)
# 打印a
a
复制代码
array([[ 0,  1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14]])
复制代码
# 创建一个长度为15,间隔10,3乘5的二维数组
b = np.arange( 1, 150, 10 ).reshape(3, 5)
# 打印b
b
复制代码
array([[  1,  11,  21,  31,  41],
       [ 51,  61,  71,  81,  91],
       [101, 111, 121, 131, 141]])
复制代码
# 两个二维数组相加 
a + b
复制代码
array([[  1,  12,  23,  34,  45],
       [ 56,  67,  78,  89, 10
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值