给定字符串 sss , 可以进行如下操作:
- 选择一个位置 i∈[1,n]i \in [1,n]i∈[1,n],在 iii 和 i+1i + 1i+1 之间将字符 sis_isi 复制一遍。比如字符串 abc\texttt{abc}abc,选择位置 i=1i=1i=1,则字符串变成 aabc\texttt{aabc}aabc。如果 iii 为末尾, 则在末尾添加。
问最少需要多少次操作才能使 sss 有长度大于等于 kkk 的回文子串。
思路:动态规划dp数组表示l-r变成回文串的最小代价,最后枚举所有结果
#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<stack>
#include<set>
#include<queue>
#define Max 0x7fffffff
#define LL long long
#define ULL unsigned long long
#define N 2000005
//#define int long long
int mod = 998244353;
using namespace std;
char a[N]; LL dp[3005][3005];
int main() {
int n, k; scanf("%d%d", &n, &k);
scanf("%s", a);
memset(dp, 0x3f, sizeof dp);
LL ans = 1e18;
int slen = strlen(a);
for (int i = 0; i < slen; i++) {//初始化
dp[i][i] = 0;//单个字符
if (a[i] == a[i + 1])//字符相同也为回文
dp[i][i + 1] = 0;
}
for (int i = 1; i <= slen; i++) {
for (int l = 0; l <= slen - i; l++) {
int r = l + i - 1;
if (a[l] == a[r]) {
dp[l][r] = min(dp[l][r], dp[l + 1][r - 1]);//更新dp数组中的值,取之前的最小值。
dp[l][r] = min(dp[l][r], dp[l][r - 1] + 1); //更新dp数组中的值,加上另一个字符的代价。
dp[l][r] = min(dp[l][r], dp[l + 1][r] + 1);//同上,在另一边加上一个字符的代价
}
}
}
for (int l = 0; l <=n; l++) {
for (int r = l; r <=n; r++) {
ans = min(ans, max(k - (r - l + 1 + dp[l][r]), 0LL) + dp[l][r]);//max是保证不为负数,计算l-r之间的长度(这是没有操作的),所以要加上dp
//再用k减去就得到了需要补几个
}
}
printf("%lld", ans);
}