Pandas零基础学蓝桥人工智能赛道补充知识

网址:蓝桥杯直通国赛班(人工智能组)_蓝桥杯 - 蓝桥云课
pandas百题:Pandas 百题大冲关_机器学习 - 蓝桥云课

目录

网址:蓝桥杯直通国赛班(人工智能组)_蓝桥杯 - 蓝桥云课

pandas百题:Pandas 百题大冲关_机器学习 - 蓝桥云课

1、Scipy生态

2、ndarray多维数组对象

3、%matplotlib inline

4、s = pd.Series(np.random.randn(5))

5、random随机

6、enumerate()   

7、字典赋值   

8、中心裁剪原理

9、缺失值拟合(百题88)

10、pd.date_range()生成日期范围

11、pd.DataFrame(num_arr, index=dates, columns=columns)

12、数据预处理顺序

13、数据预处理的并行问题

14、index=False

15、lambda


1、Scipy生态

Scipy 生态是指与Python科学计算库Scipy相关的一系列附加模块和工具。Scipy 是一个开源的Python库,提供了许多用于科学计算的功能,包括数值积分、优化、统计和线性代数等。Scipy 生态系统包括了许多与Scipy库配合使用的其他库和工具,例如NumPy、Matplotlib、Pandas等,这些库共同构成了Python科学计算领域的重要组成部分。通过这些工具的整合,用户可以方便地进行各种科学计算任务,从数据处理到模拟和可视化等。Scipy生态系统的不断发展和完善使得Python在科学计算领域的应用变得更加强大和丰富。

2、ndarray多维数组对象

NumPy(Numerical Python)是Python中用于科学计算的一个重要库,其中的核心数据结构是ndarray(N-dimensional array,多维数组)对象。ndarray对象是NumPy中最重要的数据结构之一,它表示具有相同类型和大小的元素的多维数组,可以进行高效的数值运算和数据处理。

以下是ndarray对象的一些重要特性和用法:

1. **多维数组**: ndarray可以是任意维数的数组,从一维数组到多维数组均可表示。

2. **数据类型**: ndarray中所有元素的数据类型必须是相同的,通常是数值类型(例如整数、浮点数)或者布尔类型。

3. **形状和尺寸**: ndarray具有shape属性,用于表示数组的维度,以及size属性,表示数组中元素的总个数。

4. **索引和切片**: 可以通过索引和切片访问ndarray对象中的元素,类似于Python中的列表操作。

5. **数学运算**: NumPy提供了丰富的数学函数和运算符,可以对ndarray对象进行各种数学运算,如加法、减法、乘法、除法等。

6. **广播功能**: NumPy的广播功能允许对不同形状的数组进行数学运算,使得代码更加简洁和高效。

7. **高效性能**: ndarray对象在内部实现上是连续内存块,因此能够实现高效的数值计算和向量化操作。

通过使用ndarray对象,NumPy使得Python在科学计算领域具有了与传统数值计算软件(如MATLAB、R等)相媲美的性能和功能,成为了科学计算和数据处理的首选工具之一。

3、%matplotlib inline

`%matplotlib inline`是一个IPython魔法命令,用于在Jupyter Notebook或者Jupyter Lab中内联显示Matplotlib绘制的图形。这个命令告诉Jupyter将Matplotlib图形嵌入到Notebook中的输出单元格中,而不是弹出一个新窗口显示图形。这样做使得图形能够直接在Notebook中展示,方便分析和可视化数据。

在使用`%matplotlib inline`之后,通过导入Pandas库并创建一个Series对象(类似于字典),你可以在Notebook中显示这个Series对象的内容。这样结合使用Pandas和Matplotlib,你可以方便地进行数据处理和可视化,从而更好地理解和分析数据。

4、s = pd.Series(np.random.randn(5))

这行代码创建了一个Pandas Series对象`s`,其中包含了5个由NumPy的`np.random.randn(5)`函数生成的随机数。具体解释如下:
   - `np.random.randn(5)`: 这部分使用NumPy库中的`random.randn()`函数生成一个包含5个服从标准正态分布(均值为0,方差为1)的随机数的NumPy数组。
   - `pd.Series()`: 这部分将NumPy数组转换为Pandas Series对象。Pandas Series是一种带有标签的一维数组结构,类似于Python中的字典,其中每个元素都有一个索引(标签)与之关联。

5、random随机

`rand` 是 `random` 模块中的一个函数,用于生成指定形状的均匀分布的随机数组。

`np.random.randn(5)` 中的 `randn` 是 NumPy 库中的一个函数,用于生成指定形状的服从标准正态分布(均值为0,标准差为1)的随机数。

具体来说,`np.random.randn(5)` 会生成一个包含5个随机数的一维数组,这些随机数都是从标准正态分布中随机抽样得到的。您可以通过传递不同的参数来生成不同形状和大小的随机数组。

如果您需要生成服从不同分布的随机数,NumPy 库中还提供了其他随机数生成函数,如 `np.random.rand()`(生成0到1之间的随机数)、`np.random.randint()`(生成指定范围内的随机整数)等。

6、enumerate()   

(一期模拟第三题)

在Python中,`enumerate()` 函数用于同时获取数据的索引和值,通常在需要遍历列表或其他可迭代对象时使用。

下面是一个简单的示例,展示了如何使用 `enumerate()` 函数:

```python
# 示例列表
my_list = ['apple', 'banana', 'cherry', 'date']

# 使用 enumerate() 遍历列表并获取索引和值
for index, item in enumerate(my_list):
    print(f"Index: {index}, Value: {item}")
```

在这个示例中:
- `enumerate(my_list)` 返回一个可迭代的对象,每次迭代会返回包含索引和值的元组。
- 在 `for` 循环中,`index` 变量用于存储当前迭代的索引,`item` 变量用于存储当前迭代的值。

所以,对于你提供的代码片段,`for index, item in enumerate(self.locs)` 将会遍历 `self.locs` 中的值,并且同时获取每个值的索引和值。在每次循环中,`index` 将存储当前值的索引,`item` 将存储当前值。

7、字典赋值   

(一期模拟第三题)

在Python中,字典赋值是通过键来进行的。你可以使用键来访问字典中的值,并将新值赋给这个键。下面是一个示例:

```python
# 创建一个空字典
my_dict = {}

# 向字典中添加键值对
my_dict['key1'] = 'value1'
my_dict['key2'] = 'value2'

# 打印字典
print(my_dict)

# 修改现有键的值
my_dict['key1'] = 'new_value1'

# 打印修改后的字典
print(my_dict)
```

在这个示例中:
- 我们首先创建了一个空字典 `my_dict`。
- 使用 `my_dict['key'] = 'value'` 的语法向字典中添加键值对。
- 通过 `my_dict['key'] = 'new_value'` 的语法来修改字典中现有键的值。

通过这种方式,你可以向字典中添加新的键值对,也可以修改现有键的值。

8、中心裁剪原理

(一期模拟第一题)

修改:应该是256//2-224//2

image = (image - _mean) / _std

这样的表达式通常用于对图像进行标准化处理。这里的_mean_std分别代表图像或图像数据集的均值(mean)和标准差(standard deviation)。

这种标准化操作的目的是将图像的像素值分布调整为具有零均值和单位标准差,这样的数据分布有助于某些机器学习算法(尤其是梯度下降优化算法)的训练过程,因为它可以使得权重更新的幅度更加一致,从而加速收敛。

具体来说:

  • (image - _mean):将图像中的每个像素值减去均值,这样可以使像素值的分布以0为中心。
  • / _std:将上一步得到的结果除以标准差,这样可以使像素值的分布具有单位标准差,即标准差为1。

这个操作通常应用于整个数据集的所有图像,或者至少应用于训练数据集,然后用相同的均值和标准差对验证集和测试集进行标准化处理,以保证数据分布的一致性。

9、缺失值拟合(百题88)

这段代码涉及到了对一个DataFrame的操作,主要包括数据的创建、插值处理和数据类型转换。

1. 创建DataFrame:

    - 首先,通过字典的形式创建了一个DataFrame `df`,包括四列:'From_To', 'FlightNumber', 'RecentDelays', 'Airline'。

    - 'From_To'列包含了航班起始地点信息,'FlightNumber'列包含了航班号,'RecentDelays'列包含了延误时间信息,'Airline'列包含了航空公司信息。

2. 插值处理:

    - 接下来,对'FlightNumber'列进行了插值处理。`df['FlightNumber'].interpolate()` 使用插值方法填充缺失值,这里采用的是默认的线性插值方法。

    - 插值处理可以填充缺失值,以便后续数据分析或可视化中能够更好地处理数据。

3. 数据类型转换:

    - 最后,对'FlightNumber'列进行了数据类型转换,通过`.astype(int)` 将'FlightNumber'列的数据类型转换为整数类型。

    - 这一步骤确保'FlightNumber'列中的数值都是整数类型,便于后续的数据分析和处理。

综上所述,这段代码的作用是将给定的DataFrame `df` 中'FlightNumber'列的缺失值进行插值处理,并将结果转换为整数类型,以便后续分析。

插值是一种常用的数据处理方法,用于估计在已知数据点之间的未知数值。在数据分析中,插值通常用于填充缺失值或生成连续的数据。具体到这个例子中,`df['FlightNumber'].interpolate()` 使用了插值方法填充了'FlightNumber'列中的缺失值。

常见的插值方法包括线性插值、多项式插值、样条插值等。在这里,由于没有指定具体的插值方法,默认情况下使用的是线性插值方法。

**线性插值**工作原理如下:

- 对于两个已知点 (x1, y1) 和 (x2, y2),线性插值可以通过公式估计两点之间的未知点的值

在这里,'FlightNumber'列中含有缺失值,通过线性插值,Pandas会根据已知的数据点来估计缺失值。具体地,对于每一个缺失值,Pandas会使用其前后最近的已知值进行线性插值计算。

插值处理有助于保持数据的连续性和完整性,以便在后续的数据分析或可视化中更好地处理数据。通过填充缺失值,可以避免由于数据缺失导致的分析结果不准确或可视化效果不佳的问题。

10、pd.date_range()生成日期范围

`pd.date_range('today', periods=6)` 用于生成一个包含6个日期的时间序列。这个时间序列可以被用作DataFrame或Series的索引。

具体来说,`pd.date_range()` 函数是Pandas中用于生成日期范围的函数,通过指定起始日期、周期数等参数可以创建一个日期序列。在这里,`'today'` 表示从今天开始,`periods=6` 表示生成6个连续的日期。

下面是一个简单的例子,演示如何将生成的时间序列作为DataFrame的索引:

```python
import pandas as pd

# 生成包含6个日期的时间序列
dates = pd.date_range('today', periods=6)

# 创建一个DataFrame,并将时间序列作为索引
df = pd.DataFrame(data=np.random.randn(6, 3), index=dates, columns=['A', 'B', 'C'])

print(df)
```

在这个例子中,`dates` 生成了一个包含6个连续日期的时间序列,然后我们将这个时间序列作为DataFrame `df` 的索引,这样就能够在DataFrame中使用这些日期作为索引。

11、pd.DataFrame(num_arr, index=dates, columns=columns)

1. `pd.DataFrame(num_arr, index=dates, columns=columns)`:
   - `pd.DataFrame()` 是 Pandas 库中用于创建 DataFrame 的构造函数。
   - `num_arr` 是用来填充 DataFrame 的数据,这可能是一个二维数组、列表、Series 或其他数据结构。
   - `index=dates` 指定了 DataFrame 的行索引,这里的 `dates` 可能是一个包含日期或时间戳的时间序列。
   - `columns` 参数用来指定列标签,它可以是一个列表,包含了 DataFrame 中每一列的列名。

2. 解释:
   - `num_arr` 是要填充到 DataFrame 中的数据,这个数据可能是一个二维数组。每一行代表 DataFrame 中的一行数据。
   - `index=dates` 设置了 DataFrame 的行索引,这意味着 DataFrame 的每一行都将以 `dates` 中的日期或时间戳作为索引标签。
   - `columns` 参数用来指定 DataFrame 的列标签,即每一列的名称。
   - 最终,通过这行代码,您创建了一个新的 DataFrame `df1`,其中包含了以 `dates` 为索引、以 `columns` 为列标签,填充了 `num_arr` 数据的内容。

所以,这段代码的作用是使用给定的数据 `num_arr`,指定的日期索引 `dates` 和列标签 `columns` 创建一个新的 DataFrame `df1`。

12、数据预处理顺序

(第一期模拟第一题)

正确的顺序应该是:处理缺失值 -> 处理异常值 -> 删除重复行 -> 保存数据集。

为什么特定顺序重要的原因:

  1. 处理缺失值:通常,我们会用填充缺失值的方法(如均值、中位数或众数)来补全缺失的数据。这个步骤是为了保持数据的完整性和避免在后续分析中出现偏差。

  2. 处理异常值:异常值是指数据集中与大多数其他数据不同的值,可能是由于测量错误或数据录入错误。在处理异常值时,我们可能会选择删除这些值、对其进行转换或用其他值替换它们。这个步骤是为了确保分析结果的准确性和可靠性。

  3. 删除重复行:重复行可能会导致分析结果不准确,因为它们可能会影响统计数据的计算。删除重复行是为了确保数据集的一致性和避免重复计算。

为什么顺序重要:

  • 删除重复行后处理异常值的话:如果在删除重复行之前处理异常值,那么异常值可能会被重复行的其他值所“掩盖”,因为重复行会在删除操作中被保留。

    因为删除重复行的标准通常是基于所有列的值进行比较。如果一个异常值被一个或多个重复行的“正常”值所包围,那么在基于列值进行比较时,这个异常值可能就不会被识别为重复,从而保留在数据集中。这样,在后续的分析中,异常值对结果的影响就可能被忽视,导致分析结果不准确。

    因此,在处理数据时,一般建议先删除重复行,再处理异常值。这样做可以确保每个数值都是独立的,异常值不会因为重复行而被“平均”或“掩盖”。处理完缺失值和异常值后,可以进行进一步的数据分析,比如描述性统计、相关性分析、回归分析等,从而得到更为准确和可靠的结果。

  • 处理异常值后删除重复行:如果在删除重复行之后处理异常值,那么异常值不会影响重复行的检测,因为重复行已经被删除。这样,我们就可以确保异常值不会被保留在数据集中,同时也不会影响数据的完整性和一致性。

总之,正确的顺序是先处理缺失值,然后处理异常值,最后删除重复行。这样可以确保数据集在分析前是干净、准确和一致的。

13、数据预处理的并行问题
df = (df['acousticness_yr'] >= 0) & (df['acousticness_yr'] <= 1)

df = df[(df['acousticness_yr'] >= 0) & (df['acousticness_yr'] <= 1)]

这两句代码处理缺失值和删除异常值的操作顺序存在区别,需要用df进行选择。

如在第一个代码片段中,缺失值处理和异常值删除是分开进行的:

  1. 首先使用 df.fillna(df.mean()) 填充缺失值。
  2. 然后使用逻辑运算符 & 结合条件 (df['acousticness_yr'] >= 0) & (df['acousticness_yr'] <= 1) 删除 acousticness_yr 列中不在 0 到 1 范围内的异常值。

而在第二个代码片段中,这两个操作是连续进行的:

  1. 使用 df.fillna(df.mean()) 填充缺失值。
  2. 紧接着使用条件筛选 (df['acousticness_yr'] >= 0) & (df['acousticness_yr'] <= 1),这个筛选过程会直接应用在填充缺失值之后的 DataFrame 上,从而同时处理缺失值和删除异常值。

通常情况下,将数据清洗(如缺失值处理和异常值删除)的操作放在一起进行会更加清晰和易于管理,因为这样可以确保所有的操作都是在同一个、最新的数据集上进行的。第一个代码片段的顺序可能会导致在删除异常值之前填充了缺失值,而在删除异常值之后这些填充的值可能又会被删除,从而影响到最终的数据集。

但是,在某些特定的情况下,这种顺序上的不同可能并不会对最终结果产生影响,这取决于缺失值和异常值的具体情况以及它们在数据集中的分布。在实际应用中,应根据数据的具体情况和分析需求来决定这类操作的最佳顺序。

例如:

# 读取CSV文件

df= pd.read csv('songs origin.csv')

我们选择popularity_yr这一列的语句是

value = df['popularity _yr']

没修改之前的代码就是

value = popularity_yr

电脑不知道使用哪个文件进行筛选。

14、index=False

在Python的Pandas库中,当使用to_csv方法将DataFrame保存到CSV文件时,默认情况下会包含一个索引列。这个索引列通常是DataFrame的行索引,它会在CSV文件中作为第一列出现。

在你的代码中,df.to_csv('songs_processed.csv', index=False)这行代码的意思是将DataFrame df 保存到名为 songs_processed.csv 的文件中,并且指定 index=False 参数,这意味着在保存时不包括索引列。

这样做的原因可能是因为索引列在原始的DataFrame中并不包含有用的信息,或者是因为在后续的处理中不希望这个索引列出现在CSV文件中。如果你在读取CSV文件时不需要这个索引列,或者你希望CSV文件中的列与原始数据集的列完全对应,那么设置 index=False 是一个常见的选择。

总结来说,index=False 参数用于在将DataFrame保存到CSV文件时,防止索引被写入到文件中。

15、lambda

feature_importance = sorted(zip(features, importance), key=lambda x: x[1], reverse=True)

这段代码的目的是根据特征的重要性对特征进行排序,并将排序后的特征列表和它们的重要性分数一起存储在feature_importance变量中。

让我们一步一步来解释:

  1. features是一个包含所有特征名称的列表。
  2. importance是一个包含每个特征的重要性分数的列表。在随机森林中,每个特征的重要性是通过它在构建每个决策树时减少的基尼不纯度或分类误差来计算的。
  3. zip(features, importance)是一个将features列表中的每个元素与importance列表中相应位置的元素配对的操作。这样,我们得到了一个元组列表,其中每个元组包含一个特征名称和一个与之对应的重要性分数。
  4. sorted函数用于对元组列表进行排序。排序的依据是元组中的第二个元素(即重要性分数),因为我们在key=lambda x: x[1]中指定了这一点。
  5. reverse=True表示我们想要按照重要性分数从高到低的顺序进行排序。
  6. 最后,feature_importance变量存储了排序后的元组列表。

lambda函数(匿名函数)lambda x: x[1]的作用是提供一个排序的函数。在这个上下文中,它告诉sorted函数应该根据每个元组的第二个元素(即重要性分数)来决定它们的顺序。lambda函数的语法非常简洁,它可以快速定义一个简单的函数,而不需要命名。在这个例子中,lambda函数只包含一行代码,但它可以包含更复杂的逻辑。

  • 31
    点赞
  • 45
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值