昨天的最小生成树,需要的一个算法忘提了---克鲁斯卡尔算法。
贪心思想:优先选择权值小的边加入到最小树中,并保证不形成环(用并查集判断)。
P1991 无线通讯网
先构建最小生成树,最后给树中组成权值最大边的站点安装电话即可,相当于删去s-1条大边,剩下的最大边就是答案。代码如下:
#include <iostream>
#include<cstring>
using namespace std;
#include<algorithm>
#include<cmath>
#include <iomanip>
int pre[505]; //并查集
int find(int f) {
if (pre[f] == f || pre[f] == 0)return pre[f] = f;
else return pre[f] = find(pre[f]);
}
typedef struct { //存储坐标的结点
int x, y;
}xb;
typedef struct { //存放边的信息
int x, y; //顶点
double d; //长度
}eg;
xb a[505];
eg e[250005];
double d[505]; //存放选取出来的最小生成树的边
bool cmp(eg a, eg b) {
return a.d < b.d;
}
int main() {
ios::sync_with_stdio(0);
int s, p;
cin >> s >> p;
for (int i = 1; i <= p; i++) {
cin >> a[i].x >> a[i].y;
}
int k = 0;
for (int i = 1; i <= p - 1; i++) { //遍历,把可能的每一条边都存储到e数组中
for (int j = i + 1; j <= p; j++) {
if (i != j) {
e[k].x = i;
e[k].y = j;
e[k].d = sqrt((a[i].x - a[j].x) * (a[i].x - a[j].x) + (a[i].y - a[j].y) * (a[i].y - a[j].y));
k++;
}
}
}
sort(e, e + k, cmp); //按边长从小到大排序,优先选择长度小的
int l = 0;
for (int i = 0; i < k; i++) {
int f1 = find(e[i].x);
int f2 = find(e[i].y);
if (f1 != f2) {
pre[f2] = f1;
d[l++] = e[i].d;
}
}
double sum = d[l - 1 - (s - 1)];
cout << fixed << setprecision(2) << sum;
return 0;
}
P2872 [USACO07DEC]Building Roads S
在已有若干条边的情况下,选边构建最小生成树(也可以把给定的边的长度视为0),唯一坑的地方就是计算两点之间的距离时的精度非常重要。
#include <iostream>
#include<cstring>
using namespace std;
//P2872 [USACO07DEC]Building Roads S
#include<cmath>
#include<algorithm>
#include<iomanip>
typedef struct {
int x, y;
}bb;
bb b[1005];
typedef struct {
int x, y;
double d;
}aa;
aa e[1000005];
int pre[1005];
int find(int f) {
if (pre[f] == f || pre[f] == 0)return pre[f] = f;
else return pre[f] = find(pre[f]);
}
bool cmp(aa a, aa b) {
return a.d < b.d;
}
int main() {
ios::sync_with_stdio(false);
int n, m;
cin >> n >> m;
int ans = 0;
for (int i = 1; i <= n; i++) {
cin >> b[i].x >> b[i].y;
}
int k = 0;
for (int i = 0; i < m; i++) {
int x, y;
cin >> x >> y;
x = find(x);
y = find(y);
if (x != y) {
pre[y] = x;
ans++;
}
}
for (int i = 1; i <= n; i++) {
for (int j = i + 1; j <= n; j++) {
e[k].x = i;
e[k].y = j;
e[k].d = (double)sqrt((double)(b[i].x - b[j].x) * (b[i].x - b[j].x) + (double)(b[i].y - b[j].y) * (b[i].y - b[j].y));
k++;
}
}
sort(e, e + k, cmp);
double sum = 0;
for (int i = 0; i < k; i++) {
int f1 = find(e[i].x);
int f2 = find(e[i].y);
if (f1 != f2) {
pre[f2] = f1;
sum += e[i].d;
ans++;
}
if (ans == n - 1)break;
}
cout << fixed << setprecision(2) << sum;
return 0;
}
单源最短路径
dijkstra算法:其中图用链式前向星存储,模板如下:
const int MAX = 1e5 + 5;
const int MAXN = 5e5 + 5;
#define inf 2147483647
int n, m, s;
long long dist[MAX]; //存放起点到各点的最短路径
int visited[MAX]; //标记该点是否访问
struct Edge {
int to, weight, next;
}edges[MAXN];
int head[MAX]; //hrad[i]表示以i为起点的最后一条边
int cnt;
void init()//初始化
{
for (int i = 0; i <= n; i++) head[i] = -1;
cnt = 0;
}
void add_edges(int u, int v, int w)//加边,u起点,v终点,w边权
{
edges[cnt].to = v; //终点
edges[cnt].weight = w; //权值
edges[cnt].next = head[u];//以u为起点上一条边的编号,也就是与这个边起点相同的上一条边的编号
head[u] = cnt++;//更新以u为起点上一条边的编号
}
void dijkstra() {
for (int i = 1; i <= n; dist[i++] = inf);
dist[s] = 0; // s为源点
for (int i = 1; i <= n; i++) {
long long node = 0, lowest = inf; //inf 为预设最大值
for (int j = 1; j <= n; ++j) {
if (!visited[j] && dist[j] < lowest) {
lowest = dist[j];
node = j;
}
} //找到当前距离最小的节点
visited[node] = 1;
for (int e = head[node]; e != -1; e = edges[e].next) {
int v = edges[e].to, w = edges[e].weight;
if (!visited[v] && dist[node] + w < dist[v]) {
dist[v] = dist[node] + w;
}
}
}
}
P3371 【模板】单源最短路径(弱化版)
板子题,代码如下:
#include<iostream>
using namespace std;
const int MAX = 1e5 + 5;
const int MAXN = 5e5 + 5;
#define inf 2147483647
int n, m, s;
long long dist[MAX];
int visited[MAX];
int pre[MAX];
struct Edge {
int to, weight, next;
}edges[MAXN];
int head[MAX];
int cnt;
void init()//初始化
{
for (int i = 0; i <= n; i++) head[i] = -1;
cnt = 0;
}
void add_edges(int u, int v, int w)//加边,u起点,v终点,w边权
{
edges[cnt].to = v; //终点
edges[cnt].weight = w; //权值
edges[cnt].next = head[u];//以u为起点上一条边的编号,也就是与这个边起点相同的上一条边的编号
head[u] = cnt++;//更新以u为起点上一条边的编号
}
void dijkstra() {
for (int i = 1; i <= n; dist[i++] = inf);
dist[s] = 0; // s为源点, t为目标点。
for (int i = 1; i <= n; i++) {
long long node = 0, lowest = inf; //inf 为预设最大值
for (int j = 1; j <= n; ++j) {
if (!visited[j] && dist[j] < lowest) {
lowest = dist[j];
node = j;
}
} //找到当前距离最小的节点
visited[node] = 1;
for (int e = head[node]; e != -1; e = edges[e].next) {
int v = edges[e].to, w = edges[e].weight;
if (!visited[v] && dist[node] + w < dist[v]) {
dist[v] = dist[node] + w;
pre[v] = e; //修改当前距离
}
}
}
}
int main() {
ios::sync_with_stdio(false);
cin >> n >> m >> s;
int u, v, w;
init();
for (int i = 0; i < m; i++) {
cin >> u >> v >> w;
add_edges(u, v, w);
}
dijkstra();
for (int i = 1; i <= n; i++)cout << dist[i] << ' ';
return 0;
}
P1629 邮递员送信
题目大意:求1到各个节点的最短路径和各个节点到1的最短路径的总和。
先从1到各个节点用dijkstra算法,再各个节点到1通过反向建边,再用一次dijkstra。
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
//P1629 邮递员送信
const int MAX = 1e5 + 5;
struct Edge {
int to, w, next; //终点,权值,上一个
}edge[MAX],edge1[MAX];
int head[1005]; //head[i]表示以i为起点的最后一条边
int head1[1005];
int dist[1005]; //dist[i]从1到i的最短时间
int dist1[1005]; //i到1
int visited[1005]; //visited[i]判断i是否访问
int visited1[1005];
int n, m;
int cnt;
void init() {
for (int i = 0; i <= n; i++)head1[i] = head[i] = -1;
cnt = 0;
}
void add_edge(int u, int v, int w) {
edge[cnt].to = v;
edge[cnt].w = w;
edge[cnt].next = head[u];
edge1[cnt].to = u;
edge1[cnt].w = w;
edge1[cnt].next = head1[v];
head1[v] = cnt;
head[u] = cnt++;
}
void dijkstra() {
for (int i = 1; i <= n; i++)dist[i] = MAX;
dist[1] = 0;
for (int i = 1; i <= n; i++) {
int node = 0, lowest = MAX;
for (int j = 1; j <= n; j++) {
if (!visited[j] && dist[j] < lowest) {
lowest = dist[j];
node = j;
}
}
visited[node] = 1;
for (int e = head[node]; e != -1; e = edge[e].next) {
int v = edge[e].to, w = edge[e].w;
if (!visited[v] && dist[v] > dist[node] + w) {
dist[v] = dist[node] + w;
}
}
}
}
void dijkstra1() {
for (int i = 1; i <= n; i++)dist1[i] = MAX;
dist1[1] = 0;
for (int i = 1; i <= n; i++) {
int node = 0, lowest = MAX;
for (int j = 1; j <= n; j++) {
if (!visited1[j] && dist1[j] < lowest) {
lowest = dist1[j];
node = j;
}
}
visited1[node] = 1;
for (int e = head1[node]; e != -1; e = edge1[e].next) {
int v = edge1[e].to, w = edge1[e].w;
if (!visited1[v] && dist1[v] > dist1[node] + w) {
dist1[v] = dist1[node] + w;
}
}
}
}
int main() {
ios::sync_with_stdio(false);
cin >> n >> m;
int u, v, w;
init();
for (int i = 0; i < m; i++) {
cin >> u >> v >> w;
add_edge(u, v, w);
//add_edge(v + n, u + n, w);
}
dijkstra();
dijkstra1();
long long sum = 0;
for (int i = 2; i <= n; i++)sum += dist[i] + dist1[i];
cout << sum;
return 0;
}
还有一个优化版的dijkstra算法,下次再写。。